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ABSTRACT 

This work presents a modified interpolation algorithm in list decoding of generalized 

Reed-Solomon (GRS) codes. A list decoding algorithm of generalized Reed-Solomon codes has two 

steps, interpolation and factorization. The extended key equation (EKE) algorithm proposed in [13] is 

an interpolation-based approach with a lower complexity than Sudan’s algorithm[10]. A limitation in 

such an EKE algorithm is only suitable for a GRS code with code rate 3/1R . To overcome such a 

limitation and increase the decoding speed, this work presents a modified EKE algorithm for a GRS 

code with any code rate. This proposed EKE algorithm needs less complexity than the original EKE 

algorithm does, as GRS codes of code length 255 and 3/12.0  R  are employed. 

Keywords: Reed-Solomon decoding, list decoding, extended key equation algorithm 

廣義 Reed-Solomon 碼的改進式插值列表解碼演算法 

胡大湘＊
  阮仲義 

大葉大學電機工程學系 

摘    要 

自這項研究提出廣義 Reed-Solomon 碼的改進式插值列表解碼演算法。廣義 Reed-Solomon

列表解碼演算法有兩個步驟，插值和分解。相較於 Sudan 演算法[10]，此研究所提出的擴展關鍵

方程式（EKE）[13]演算法是一種複雜性較低的插值方法。原本 EKE 演算法僅適合於碼率小於

1/3。為了克服這種限制，提高解碼速度，這項研究提出修改版的 EKE 演算法。當廣義

Reed-Solomon 碼長度為 255 和碼率介於 0.2 與 1/3 之間時，這項研究成果，比原來 EKE 演算法

需要更少的複雜性。 

關鍵詞： Reed-Solomon解碼，列表解碼，擴展關鍵方程式演算法 
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Ⅰ. INTRODUCTION 

Reed-Solomon (RS) codes are currently 

used in a wide variety of applications, ranging 

from data storage systems, mobile 

communications to satellite communications. 

The third-generation (3G) wireless standard 

utilizes RS codes as outer codes. For 

CDMA2000 high-rate broadcast packet data air 

interface [1], they are expected to be adopted as 

outer codes in concatenated coding schemes for 

future fourth-generation (4G) wireless systems. 

Algorithms for hard decision decoding of 

RS codes are typically classified into two 

well-known types, namely syndrome-based 

decoding and interpolation-based decoding. 

Well-developed algorithms in the first category 

include the Peterson-Gorenstein-Zierler 

algorithm [3], Berlekamp-Massey algorithm 

[2][3], Euclidean algorithm [2][3], frequency 

domain algorithm [2][3], step-by-step algorithm 

[4]-[7]. Algorithms in the second category 

include the Welch-Berlekamp algorithms [8][9] 

and list decoding algorithms [10][11][13], as 

Koetter-Vardy algorithm [12] is also a list 

decoding algorithm but with soft decision 

approaching. 

Sudan’s algorithm [10] decodes GRS codes 

in two steps involved, namely interpolation and 

factorization. An interpolation is performed on a 

received word 0 1 1( , , , )v nv v v   , producing a 

nonzero bivariate polynomial, 


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)( ),()(),(  , with at 

least n  points ),( i

i v . The interpolation 

equations are 0),( i

i vQ  , and 

}1,,1,0{]1[  nni  . Factorization is 

then performed on ),( yxQ , yielding linear 

factors (or called y-root polynomials) )(ˆ xfy  . 

The codewords are then generated from these 

distinct factors )(ˆ xf  via an evaluation 

mapping. A decoded codeword ĉ  is chosen if 

the Hamming distance between c  and v  is 

  or less. 

Because solving these interpolation 

equations of Sudan’s algorithm with a naïve 

Gaussian elimination requires the time 

complexity O(n3), an EKE algorithm has been 

presented to decrease this complexity [13]. The 

EKE algorithm employs generalized 

Berlekamp-Massy algorithm that obtains the 

shortest recurrence that generates a given 

sequence, and the time complexity of EKE to 

solve these interpolation equations is 

O(
2( )l n k ). l represents a design parameter, 

typically a small constant, which is an upper 

bound on the size of the list of decoded 

codewords.  

Guruswami and Sudan (GS) presented an 

improvement on Sudan’s algorithm [11], by 

introducing a multiplicity m at each interpolation 

point. A nonzero ),( yxQ  polynomial exists 

that interpolates the points (xi, yi), ]1[  ni  

with multiplicity m, and is formed by 
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comparison with Sudan’s work, the GS 

algorithm provides more n
m

n 






 

2

1
 linear 

homogeneous equations in interpolation, thus 

improving the decoding correction distance. 

Increasing m improves the decoding 

performance, but also increases the required 

complexity. The asymptotical decoding 

correction fraction is given by R1 , and the 

code rate R is given by nkR / . The increase 

in decoding capability is substantial, especially 

for low rate GRS codes.  

Koetter and Vardy [12] extended the GS 

algorithm by incorporating the soft information 

received from a channel into the interpolation 

process. With a complexity that is polynomial in 

the code length, the Koetter–Vardy (KV) 

algorithm can achieve a substantial coding gain 

over the GS algorithm. For instance, at a 

frame-error-rate (FER) of 10−5,  the KV 

algorithm can achieve a coding gain of about 

1dB over the GS algorithm, for a (255,144) GRS 

code transmitted over an additive white 

Gaussian noise (AWGN) channel using 

256-QAM modulation [12]. 

Those approaches commonly have a 

drawback, which codeword-checking (or 

syndrome computation) is absent during their 

decoding processes. In other words, regardless 

of whether the received sequence is correct or 

not, the decoding algorithm proceeds to decode 
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it. This work overcomes this drawback by 

presenting a modified EKE algorithm with 

codeword checking. The EKE algorithm [13] is 

proposed only for the decoding rate of no larger 

than 1/3. In overcoming such a limitation, based 

on ordering of the y-power in the 

polynomial ),( yxQ , the work proposes a way 

suitably to decode a GRS with any code rate. 

The rest of this paper is organized as 

follows. Section II introduces the EKE algorithm. 

Section III presents the modified EKE algorithm 

based on syndrome computations and matrix 

operations to obtain the transmission 

information from the received codeword. 

Additionally, some examples are given to 

illustrate the benefit of the modified EKE 

algorithm. Section IV displays the complexity 

analysis of these two EKE algorithms. Finally, 

conclusions are presented in Section V. 

Ⅱ. EXTENDED KEY EQUATION 

ALGORITHM 

At the end of Consider an evaluation 

mapping
1

110)( 

 k

k xmxmmxf   and 

12  mn . A codeword in an (n, k) GRS code 

over GF(2m) is generated as  
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where the information vector 

0 1 1( , , , )m km m m   , and the generator 

matrix is 
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   (2) 

and  is a primitive element in GF(2m) .  

The term l  is the upper bound of the 

number of consistent codewords, which are at 

Hamming distance   from any received 

word. For an (n, k) GRS code, Sudan’s algorithm 

corrects any error pattern of up to   errors for  

    )1()1(  klmn     (3) 

where m denotes the smallest nonnegative 

integer holding the following equation. 

       n
l

klm 






 
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2

1
)1()1)(1(  (4) 

Assuming that 3/)1(  nk , the value of   

becomes 

        kn  3/)1(2        (5) 

Let F be a field and ][xFk  represent the set of 

all polynomials of degree < k in the variable x 

over F. Sudan’s algorithm consists of the 

following steps: 

1. Find a nonzero bivariate polynomial Q(x, y) 

over F with at least n  points ),( i

i v , 

interpolation equations 0),( i

i vQ  , and 

]1[  ni , for a received word 

0 1 1( , , )v nv v v   . 

2. Output all polynomials ][)( xFxf k  for 

which )(xfy   is a factor of Q(x, y) and 

i

i vf )(  for at least n  locators 
i . 

In [2][3], for an (n, k) RS code, the 

error-locator polynomial )(x  and the 

error-evaluator polynomial )(x  are 

computed in the following key equation (KE)  

      )(mod)()()( knxxxSx   (6) 

In [13], based on the linear factors of bivariate 

polynomials Q(x, y) where the polynomial 

arithmetic is carried out modulo a power of x in 

Sudan’s algorithm, an EKE algorithm is derived 

as follows: 



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l

t

kntktt xxxSxx
1

)()1)(1()( )(mod)()()(

                   (7) 
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where )()( xt , },2,1{ lt  , and )(x are 

polynomials that satisfy certain degree 

constraints, and )()( xS t
are syndrome 

polynomials as follows: 
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Furthermore, the above equation can be obtained 

as follows: 
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and  
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0
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)( , and  },2,1{ lt   (12) 

After these polynomials )()( xQ t
, 

},,2,1{ lt  , have been computed in (11) by 

using the Generalized Berlekamp-Massey (GBM) 

algorithm[14] or a similar algorithm mentioned 

in [13], the polynomial )()0( xQ  is obtained as 

follows:  

   

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t
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Ⅲ. MODOFIED EXTENDED KEY 

EQUATION ALGORITHM 

Since the polynomial 





1

0

)(
n

i

i

i xmxf is 

associated with a codeword c C  , which has 

zeros 
kn ,,,,1 2  [15], a parity-check 

matrix for C is given by[16][17],  
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Theorem 1: Let lx and L be the highest x-power 

and y-power in a bivariate polynomial ),( yxQ . 

Assuming 

)1)(1(  Lklx           (16) 

and nyxQ |),(|  such that the value of L is 

determined by  


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Proof: The bivariate polynomial is defined as  
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nyxQ |),(| , the above equation becomes 
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Theorem 2: A modified EKE algorithm is 

derived in the following 
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The list decoding algorithm [13] of an [n, k] 

GRS code is adjusted as  

1. Compute syndrome elements, 

(1)
S v H

T  [18], for a received vector v . If 

(1)
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corresponding message vector m determined as 

'm m M  [18], where a vector 'm  is the last 

k-tuple of v  and M is a k  k matrix such that 

'G M G   is a systematical matrix. Go to 

Step 5. 

2. Perform the modified EKE 

interpolation:  
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2) Find the polynomial 

,1,)(
)1(

0

)()( LtxQxQ
ktl

j

jt

j

t
x

 




 by the GBM  

algorithm such that 0)(

1

)1(

0

)( 







  t

ji

L

t

ktl

j

t

j SQ
x

,  

10  xlni . 

3) Obtain the polynomial )()0( xQ  

such that 



xl

t

t

j

jtj vQQ
1

)()0( )()(  , 

]1[  nj , and then form the bivariate 

polynomial 



L

t

tt yxQyxQ
0

)(),(
)(

. 

3. Perform the factorization on the 

bivariate polynomial ),( yxQ by employing the 

reconstruction algorithm [13] to find the y-root 

polynomials 

1

110
ˆˆˆ)(ˆ 

 k

k xmxmmxf   

4. Compute the corresponding 

codeword 
1ˆ ˆ ˆˆ ( (1), ( ), , ( ))c

nf f f     for 

each polynomial )(ˆ xf .Output the message 

vector 
* * *

0 1 1* ( , , , )m km m m    of the 

codeword *c  with the shortest Hamming 

distance between values of v . 

5. Terminate decoding.  

The following two examples illustrate the 

modified EKE decoding algorithm. Firstly, this 

proposed algorithm decodes GRS (7, 3) code, as 

error-free and error-existing conditions are 

encountered. The other case is to decode GRS 

(15, 3) code with errors more than 2/)( kn  , 

which 7 errors are corrected in proposed 

decoding. 

Example : For a (15, 3) GRS code over GF(24) 

is generated by the polynomial 

41 XXXp )( . The message is 

9 14 8( , , )m     and its codeword is  



中正嶺學報 第四十二卷 第一期 民國 102.5  

JOURNAL OF C.C.I.T., VOL.42, NO.1, MAY, 2013 

 

 7 

5 6 10 10 9 13 7 13 6

5 7

( , , , ,0,1, , , ,1, , ,

0, , )

v         

 


 

If the error vector 

13 2 14 6 6 2(0, ,0, , ,0,0,0, ,0, ,0,0, , )e       

appears over the transmission channel, then the 

received vector at the output of demodulator is 

5 10 4 14 9 13 10

6 14

( ,1, , , ,1, , , ,1,1,

,0, , )

r v e

      

  

 



The syndrome vectors are computed in the 

following 

(1) 6 11 6 11 5 10 3 11 2

13 4

( , , , , , , , , , ,

, )

         

 

S

and

(2) 7 12 2 7 4 12 11 7 8 10

13 5

( , , , , , , , , , ,

, )

S          

 



The values of the highest degrees of y-power 

and x-power in the bivariate polynomial 

),( yxQ  computed in (18) and (19) are  

22
13

158
13 












 /)(L      

and 61213  ))((xl . 

The bivariate polynomial ),( yxQ  determined 

at Step 2 is shown in the following:  

)(

)(

),(

25142

421210610

5835241210

xxy

xxyx

xxxxyxQ













The y-root polynomial of ),( yxQ factorized by 

the reconstruction algorithm is  

28149)(ˆ xxxf    

whose message is 
9 14 8( , , )m*    . 

Ⅳ. COMPLEXITY ANALYSIS 

For obtaining of the bivariate polynomial 

),( yxQ , the EKE algorithm in [13], which is 

similar to the GBM algorithms[5][14], is 

realized to determine the shortest length 







1

0

tN

j

jt

j

t xQxQ )()(
)( , },2,1{ lt  , such that 

(11) holds. Since the GBM algorithm is run 

column by column in a matrix: in a column of 

the matrix, while a nonzero discrepancy on a 

row occurs, the corresponding shortest 

polynomial )()( xQ t
 is updated at this point. As 

a result, the size of the matrix dominates the 

decoding complexity. Obviously, reducing the 

size of the matrix lowers the complexity of 

locating the smallest length of linear dependent 

coefficients. The dimensions of the S-matrix in 

(11) are   by )2/)1)(1((  lknl  . The 

EKE algorithm requires the solving of   

homogeneous linear equations in (11) to obtain 

)()( xQ t
,  },2,1{ lt  , and then finding the 

corresponding coefficients of )()0( xQ  in (14). 

The time complexity of the EKE algorithm is 

))(( 2knlO   (equally, ))1(( 22 RnlO  ), 

which improves on the time complexity of 

)( 3nO  of Sudan’s algorithm. In the modified 

EKE algorithm, the dimensions of the S-matrix 

in (22) are 1 xln  by )/( 21 xlL  . 

According the complexity analysis on [13, p253], 

the time complexity of the proposed algorithm is 

))(( nknnO   (equally, ))1(( 2 RnO  ).  

A design parameter l in [13] is an upper bound 

on the size of the list of decoded codewords. As 
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code rate 3/1R , the value of l is determined 

by the following range, 

2

2

2 2 1 (2 2 1) 8 ( 1)

2( 1)

2 2 1 (2 2 1) 8 ( 1)

2( 1)

n k n k k
l

k

n k n k k

k

  

  

        




        




The value of l determines the size of S-matrix in 

(11). The higher value of l results in more 

decoding complexity in (11). However, the 

lower value of l could decrease the error 

correction capability of the list decoding 

algorithm [13]. While the size of an S-matrix is 

large, the complexity of locating the 

corresponding shortest linear dependent 

coefficients in )()( xQ t
 becomes huge 

accordingly. In order to simply compare the 

complexity of these two ELE algorithms, the 

dimensions and sizes of S-matrices of (11) and 

(20) are listed in Table 1, in which GRS codes of 

length 255 and code rate 3/1R  are 

employed and the smallest value of l, which is l 

= 2 , is selected. For cases of 1.0R  (equally, 

message length 25k ), the sizes of S-matrices 

in (11) are less than those in (20). However, for 

the other cases, the complexity of (11) might be 

larger than that in (20), based on that the sizes of 

S-matrices in (11) are larger than those in (20). 

Ⅴ. CONCLUSIONS 

This work presents a modified EKE 

algorithm, incorporating syndrome computations 

and matrix operations, which obtain the 

transmission information from the received 

codeword. The computations of syndrome 

elements do not increase the complexity of the 

original EKE algorithm, because it is an item in 

such a proposed decoding. The proposed EKE 

algorithm is beneficial when the signal-to-noise 

ratio is high. Additionally, this work provides a 

way to generalize the EKE algorithm, which 

decodes a GRS code with any code rate. The 

proposed EKE algorithm requires less 

complexity than the original EKE algorithm 

does while GRS codes of code length 255 and 

code rate 0.1 0.3R   are used. 
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Table 1: The dimensions and sizes of S-matrices in two EKE algorithms 

 


