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ABSTRACT

This work presents a modified interpolation algorithm in list decoding of generalized
Reed-Solomon (GRS) codes. A list decoding algorithm of generalized Reed-Solomon codes has two
steps, interpolation and factorization. The extended key equation (EKE) algorithm proposed in [13] is
an interpolation-based approach with a lower complexity than Sudan’s algorithm[10]. A limitation in
such an EKE algorithm is only suitable for a GRS code with code rate R <1/3. To overcome such a
limitation and increase the decoding speed, this work presents a modified EKE algorithm for a GRS
code with any code rate. This proposed EKE algorithm needs less complexity than the original EKE
algorithm does, as GRS codes of code length 255 and 0.2 < R <1/3 are employed.
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I.INTRODUCTION

Reed-Solomon (RS) codes are currently
used in a wide variety of applications, ranging
from  data  storage systems, mobile
communications to satellite communications.
The third-generation (3G) wireless standard
utilizes RS codes as outer codes. For
CDMAZ2000 high-rate broadcast packet data air
interface [1], they are expected to be adopted as
outer codes in concatenated coding schemes for
future fourth-generation (4G) wireless systems.

Algorithms for hard decision decoding of
RS codes are typically classified into two
well-known types, namely syndrome-based
decoding and interpolation-based decoding.
Well-developed algorithms in the first category
include the Peterson-Gorenstein-Zierler
algorithm [3], Berlekamp-Massey algorithm
[2][3], Euclidean algorithm [2][3], frequency
domain algorithm [2][3], step-by-step algorithm
[4]-[7]. Algorithms in the second -category
include the Welch-Berlekamp algorithms [8][9]
and list decoding algorithms [10][11][13], as
Koetter-Vardy algorithm [12] is also a list
decoding algorithm but with soft decision
approaching.

Sudan’s algorithm [10] decodes GRS codes
in two steps involved, namely interpolation and
factorization. An interpolation is performed on a

received word v =(v,,V,,**-,V, ), producing a

nonzero bivariate polynomial,

! n

O(x,») =Y. 0 (x)y" = a,d(x,y), with at
1=0 i=0

least n—7 points (a',v,). The interpolation

O(@',v)=0 , and
ie[n-1]1=1{0,1,---,n—1} . Factorization is

equations are

then performed on Q(x,y), yielding linear

factors (or called y-root polynomials) y — f (x).

The codewords are then generated from these

S (x)
mapping. A decoded codeword € is chosen if
the Hamming distance between ¢ and Vv is
T or less.

Because solving these interpolation
equations of Sudan’s algorithm with a naive
Gaussian  elimination requires the time
complexity O(n*), an EKE algorithm has been

distinct factors via an evaluation

presented to decrease this complexity [13]. The
EKE algorithm employs generalized
Berlekamp-Massy algorithm that obtains the
shortest recurrence that generates a given
sequence, and the time complexity of EKE to
solve  these interpolation equations is

O(I(n—k)*). I represents a design parameter,

typically a small constant, which is an upper
bound on the size of the list of decoded
codewords.

Guruswami and Sudan (GS) presented an
improvement on Sudan’s algorithm [11], by
introducing a multiplicity m at each interpolation
point. A nonzero Q(x,y) polynomial exists

that interpolates the points (x;, ), i €[n—1]
with multiplicity m, and 1is formed by

< 1
Q(x,y)=Za,¢(x,y) , c=n(m;j . In

comparison with Sudan’s work, the GS

) _ m+1 )
algorithm provides more n 5 —n linear

homogeneous equations in interpolation, thus
improving the decoding correction distance.
Increasing m  improves the  decoding
performance, but also increases the required
complexity. The asymptotical decoding

correction fraction is given by 1— JR , and the
code rate R is given by R =k/n. The increase
in decoding capability is substantial, especially
for low rate GRS codes.

Koetter and Vardy [12] extended the GS
algorithm by incorporating the soft information
received from a channel into the interpolation
process. With a complexity that is polynomial in
the code length, the Koetter—Vardy (KV)
algorithm can achieve a substantial coding gain
over the GS algorithm. For instance, at a
frame-error-rate (FER) of 107, the KV
algorithm can achieve a coding gain of about
1dB over the GS algorithm, for a (255,144) GRS
code transmitted over an additive white
Gaussian noise (AWGN) channel using
256-QAM modulation [12].

Those approaches commonly have a
drawback, which codeword-checking (or
syndrome computation) is absent during their
decoding processes. In other words, regardless
of whether the received sequence is correct or
not, the decoding algorithm proceeds to decode



it. This work overcomes this drawback by
presenting a modified EKE algorithm with
codeword checking. The EKE algorithm [13] is
proposed only for the decoding rate of no larger
than 1/3. In overcoming such a limitation, based
on ordering of the y-power in the
polynomial O(x, y), the work proposes a way

suitably to decode a GRS with any code rate.
The rest of this paper is organized as

follows. Section II introduces the EKE algorithm.

Section III presents the modified EKE algorithm
based on syndrome computations and matrix
operations to obtain the transmission
information from the received codeword.
Additionally, some examples are given to
illustrate the benefit of the modified EKE
algorithm. Section IV displays the complexity
analysis of these two EKE algorithms. Finally,
conclusions are presented in Section V.

II. EXTENDED KEY EQUATION
ALGORITHM

At the end of Consider an evaluation
mapping f(x) =m, +mx+---+m,_ x"" and

n=2"—1. A codeword in an (n, k) GRS code

over GF(2") is generated as

c=(c,,¢p55C, )
=(f(@"), f(a) f(@"™) (D
-m-G
where the information vector
m = (m,,m,,---,m,_) , and the generator
matrix is
1 1 1
1 a - a™!
G= | @)
1 o~ oDk

and o is a primitive element in GF(2™) .

The term [ is the upper bound of the
number of consistent codewords, which are at
Hamming distance <7 from any received

word. For an (n, k) GRS code, Sudan’s algorithm
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corrects any error pattern of up to 7 errors for

t=n—(m+1)—-1(k-1) 3)
where m denotes the smallest nonnegative
integer holding the following equation.

(m+l)(l+l)+(k—l)[“2-1j >n (4)

Assuming that k < (n+1)/3, the value of 7
becomes

r=[2(n+1)/3]-k (5)
Let F be a field and F[x] represent the set of
all polynomials of degree < k in the variable x
over F. Sudan’s algorithm consists of the
following steps:

1. Find a nonzero bivariate polynomial Q(x, y)

over F with at least n—7 points (a',v,),

interpolation equations Q(a',v,)=0 , and

ieln—1] , for a received word
V=V, V)
2. Output all polynomials f(x) € F,[x] for

which y— f(x) is a factor of Q(x, y) and
f(a')=v, foratleast n—7 locators a'.

In [2][3], for an (n, k) RS code, the
A(x) and the
Q(x) are
computed in the following key equation (KE)
A(x)-S(x)=Q(x) (modx"™*) (6)

In [13], based on the linear factors of bivariate

error-locator  polynomial

error-evaluator ~ polynomial

polynomials Q(x, y) where the polynomial
arithmetic is carried out modulo a power of x in
Sudan’s algorithm, an EKE algorithm is derived
as follows:

I
ZA(;) (x)-x“PED S0 (x) = Q(x) (mod x" ™)

t=1

(7
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where AY(x), te{l,2,---1}, and Q(x) are

polynomials that satisfy certain degree
constraints, and S’ (x) are syndrome
polynomials as follows:
n=2-t(k-1)
S(t)(x): ZSi(t)xl’
i=0
( n—1
t t ij
SO =>vna, (8)
=0

and

= I (a/-a 9
& "E[n—l]\{.i}( ) O

Furthermore, the above equation can be obtained

as follows:
| N,-1
o) Q) _ .
ZZQJ S;=0, 0<i<r,
=1 j=

N, =n—-7t—-t(k-1) (10)

which denoted as

1 1 2 i
Sé) va][l Sé) va[)fl
!
Sl(l) Sf\;l) 51(2) SJ(V/) .
1 1 2 Il
Si—)l S](\/I)+r—2 S;j S](Vl)+‘r72
U]
’ )
ol | |\
@ |7
. 0
oV
N-1
and
N,-1 .
0V(x)=>0"x" ,and 1e{l,2,--1} (12)
j=0
After  these  polynomials o"(x)

t €{l,2,---,1}, have been computed in (11) by
using the Generalized Berlekamp-Massey (GBM)
algorithm[14] or a similar algorithm mentioned
in [13], the polynomial Q' (x) is obtained as

follows:

0" (x) + ZQ(” ()" =0(x,») (13)

and satisfies
i

0" (a’)=-2 0"’y and je[n-1]

t=1

(14)

. MODOFIED EXTENDED KEY
EQUATION ALGORITHM

n-l1
Since the polynomial f(x)= Zm[xi is

i=0
associated with a codeword ¢ e C , which has
zeros Lo, a”,---,a" " [15], a parity-check

matrix for C is given by[16][17],

1 « a
1 a2 . aZ(n—l)

H= . (15)
l an—k a(n—k)(n—l)

Theorem 1: Let /. and L be the highest x-power

and y-power in a bivariate polynomial Q(x,y).

Assuming
[, =(k=1)(L+1) (16)
and |Q(x,y)|=n such that the value of L is
determined by
L—{(—3+ 14 )/2J 7
k—1
Proof: The bivariate polynomial is defined as
L oL Ljken
O(x,) =207y =3 3 bx'y’
j=0 j=0 =0
(18)
The value of | O(x,y)| is given by
L L—jk-1)
10 =D, D 1=L+D(, ~L(k-1)/2)
j=0 =0

Assuming [/ =(k—-1)(L+1) and

| O(x,y)| = n, the above equation becomes



And then

Le| (34 14y /2.
k-1
#
Theorem 2: A modified EKE algorithm is

derived in the following
L [ .—t(k-1)

Y 0YsY =0, 0<i<n-I -1,

t=1  j=0
(19)
which can be denoted as
(O] O (2) (L)
So o Slx—k+1 S S[X—L(k—l)
(00 (0] (2) (L)
SI o Slx—k+2 Sl SIX—L(k—l)ﬁ-l
(1) 1 2) (L)
Snfl,;Z Sn—k—l Sn—lx—Z Sn—L(k—l)—Z
(1)
0
(1) 0
L=(k=1) | | -
@ ||
0 0
(L)
1 ~L(k-1)
(20)

Proof: The proof is similar to this in [13]. The

variable y is replaced by a received polynomial
V(X)=v,+vx+--v _x"" and V(a)=v,

and i€[n—1] in (18), which yields the

following univariate polynomial:
L

309 () () = B(x)}fll(x— @), @1
where

0"() =30/ (x)

and degB(x)=L(n—-1)+k—-1-n . If the
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order of coefficients in both sides of (21) is

reversed, then the coefficients of

L(n—k)-1

Lx,--,x in both sides of the result

should be identical. Namely,

L

k1 n=DL ZQ(t) (x—l )(V(x—l ))t =

t=1

n
xk71+(n—l)L—nB(x—l) H(l _ an) mOd xL(n—k)
j=1
Further more, it becomes

ZL:A(’)(x)x(L”)("’k)(V(x))’ = B(x)G(x) mod x*™

(22)

where
1, —t(k-1)

A(t)(x) — ZA(J{)XJ' — xlft(kfl)Q(t)(x—l)

j=0
V(x)=x"""(x")
E(x) — xL(n—1)+(k—l)—nB(x—l)

G(x)=T(1-a,x) .
J= :
Let I7(x) be expressed as following:
T @) =180 @)+ U (0)G()
(23)

where S (x) has been defined in (8) and

U (’)(x)el*“(t_l)(n_l)_l[x] . We obtain the

following equation by substituting (23) into (22),

L
ZA(I) (x)x(L—t)(n—k)+(t—1)(n—1)—1S(t) (x) =

t=1
V (x) mod x2"0
(24)
where

V(x)=B(x)- ZL: A (x)x U O (x)

t=1
Moreover, (26) is divided by x“ "™ which
yields the following
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L
ZA(:) (x)x(t—l)(k—l)—IS(t) (x) = Q(x) mod x"

(25)

where
Qx) =V (x)/ xE008)

Since degQ2(x) = L(k—1)—1, the coefficients
of powersx', L(k—1)<i<n—k—1, in (25)

are zeros. Therefore,
L 1 —t(k=1)

) o) —
Z ZAJ‘ Si—j—(k—l)(f—l)H =0,

t=1  j=0
Lk-1)<i<n—k-1

For more computations, we obtain the following
L [.—t(k-1)

> Y 0VS8P =0, 0<i<n— ~1

t=1  j=0

#

The list decoding algorithm [13] of an [n, k]

GRS code is adjusted as
1. Compute

syndrome elements,

S =v.H"[18], for a received vector v. If

S® is an all-zero vector, then output the

corresponding message vector m determined as
m =m" M [18], where a vector m' is the last
k-tuple of v and M is a k x k matrix such that
G'=M-G is a systematical matrix. Go to
Step 5.

2. Perform the modified EKE
interpolation:
1) Compute the other syndrome
n—l,=2

polynomials in parallel: S“(x)= ZSf”xi ,

i=0
n—1
and S :Zv;a("”” and te{2,--,L} .

=0

2) Find the
1.~t(k-1) '
0" (x)= > 0Vx’/, 1<t<L, bythe GBM

Jj=0

polynomial

L 1—i(k-1)
algorithm such that z ZQE')S;?]. =0 ,
=1 j=0
0<i<n-l -1.
3) Obtain the polynomial

0" ()
0" (@) =3 0" @), .

t=1

such  that

and then form the bivariate

jeln-1],
L

polynomial O(x,y) =Y 0 (x)y".
t=0

3. Perform the factorization on the
bivariate polynomial (Q(x, )by employing the
reconstruction algorithm [13] to find the y-root

polynomials
F(x) =ty + x4+, x*

4.  Compute the corresponding

codeword €= (f(l),f(a),- - ,]A”(Ot"f1 )) for
each polynomial j} (x) .Output the message

* * *
vector ~ m*=(my,m ,---,m_;)  of the

codeword ¢* with the shortest Hamming
distance between values of v.

5. Terminate decoding.
The following two examples illustrate the
modified EKE decoding algorithm. Firstly, this
proposed algorithm decodes GRS (7, 3) code, as
error-free and error-existing conditions are
encountered. The other case is to decode GRS
(15, 3) code with errors more than (n—k)/2,
which 7 errors are corrected in proposed
decoding.
Example : For a (15, 3) GRS code over GF(2*)
is generated by the
p(X)=1+X+X* . The

9 14 8 . .
m=(a ,a",a") and its codeword is

polynomial

message  is



5 6 10 10 9 13 7 13 6
v=(a,a’,a",a",0,La,a”,a',l,a’,a’,
0,0°,a’)

If the error vector

e=(0,a"”,0,a’,",0,0,0,a°,0,°,0,0,ct*, @)

appears over the transmission channel, then the

received vector at the output of demodulator is
r=v+e
=(0[5,1,0{10,054,0514,1,059,0513,0{10,1,1,
a’,0,a,a)

The syndrome vectors are computed in the

following
1 6 11 6 11 5 10 3 11 2
SV =(a’,a",a’,a",a’,a",a’,a" \a,a’,
13 4
a’,a’)
and
4 2
S(Z) :(a7,a12,a2’a7’a ’al ’a11’a7’a8)a107
a13’a5)

The values of the highest degrees of y-power

and x-power in the bivariate polynomial

O(x,y) computed in (18) and (19) are

8x15
L—{(—3+1/1+ 31 )/ZJ—Z

and [, =(3-1(2+1)=6.
The bivariate polynomial Q(x,y) determined

at Step 2 is shown in the following:

0x,y)=a" +ax+a’*x* +a’x’ +a*x’+
a®x*+y(a" +a?x® +x*)+
Y +a’x+x?)

The y-root polynomial of Q(x, y) factorized by

the reconstruction algorithm is

f(x) =a’ +atx+a’x’
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whose message is m* =(a’,a'*,a*).
IV. COMPLEXITY ANALYSIS

For obtaining of the bivariate polynomial
0O(x,y), the EKE algorithm in [13], which is
the GBM algorithms[5][14], is

to determine the

similar to

realized shortest length

N,-1 ‘
0V (x)=> 0"x" ,te{l,2,-+1}, such that
Jj=0

(11) holds. Since the GBM algorithm is run
column by column in a matrix: in a column of
the matrix, while a nonzero discrepancy on a
row occurs, the corresponding shortest
polynomial Q" (x) is updated at this point. As
a result, the size of the matrix dominates the
decoding complexity. Obviously, reducing the
size of the matrix lowers the complexity of
locating the smallest length of linear dependent
coefficients. The dimensions of the S-matrix in
(I1)are 7 by l(n—7—(k—1)({+1)/2). The
EKE algorithm requires the solving of
homogeneous linear equations in (11) to obtain
0" (x), te{l,2,---I}, and then finding the
corresponding coefficients of Q'”(x) in (14).
The time complexity of the EKE algorithm is
O(-(n—k)*) (equally, O(-n*(1-R)*) ),
which improves on the time complexity of
O(n’) of Sudan’s algorithm. In the modified
EKE algorithm, the dimensions of the S-matrix
in (22) are n—[ -1 by LA+ /2) .
According the complexity analysis on [13, p253],

the time complexity of the proposed algorithm is
O(n-(n—~Ink)) (equally,O(n*(1—~v/R))).

A design parameter / in [13] is an upper bound

on the size of the list of decoded codewords. As
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code rate R <1/3, the value of / is determined

by the following range,
2n—=2r—k+1—+)(2n - 27—k +1)* =8z(k —1) -
2k —1)
3 227 —k+14+:J(2n 27—k +1) —87(k 1)
2k —1)

The value of / determines the size of S-matrix in
(11). The higher value of / results in more
decoding complexity in (11). However, the
lower value of / could decrease the error
correction capability of the list decoding

algorithm [13]. While the size of an S-matrix is

large, the complexity of locating the
corresponding  shortest linear  dependent
coefficients in Q" (x) becomes huge

accordingly. In order to simply compare the
complexity of these two ELE algorithms, the
dimensions and sizes of S-matrices of (11) and
(20) are listed in Table 1, in which GRS codes of
length 255 R<1/3 are

employed and the smallest value of /, which is /

and code rate

=2, is selected. For cases of R <0.1 (equally,
message length k& < 25), the sizes of S-matrices
in (11) are less than those in (20). However, for
the other cases, the complexity of (11) might be
larger than that in (20), based on that the sizes of

S-matrices in (11) are larger than those in (20).

V. CONCLUSIONS

This work presents a modified EKE
algorithm, incorporating syndrome computations
and matrix operations, which obtain the
transmission information from the received
codeword. The computations of syndrome
elements do not increase the complexity of the

original EKE algorithm, because it is an item in

such a proposed decoding. The proposed EKE
algorithm is beneficial when the signal-to-noise
ratio is high. Additionally, this work provides a
way to generalize the EKE algorithm, which
decodes a GRS code with any code rate. The

proposed EKE algorithm requires less

complexity than the original EKE algorithm
does while GRS codes of code length 255 and
coderate 0.1<R<0.3 areused.
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Table 1: The dimensions and sizes of S-matrices in two EKE algorithms

EKE algorithm modified EKE algorithm
i o515 Size of Size of
k T S-matrix | n—7I -1 | LA+ _/2) S-matrix in
b =2 in (11) (22)
3 167 170 28390 224 224 50176
5 165 168 27720 214 189 40446
7 163 166 27058 206 175 36050
9 lo1 164 26404 198 174 34452
11 159 162 25758 194 155 30070
13 157 160 25120 182 185 33670
15 155 158 24490 184 144 26496
17 153 156 23868 174 164 28536
19 151 154 23254 182 111 20202
21 149 152 22648 174 123 21402
23 147 150 22050 166 135 22410
25 145 148 21460 158 147 23226
27 143 146 20878 176 80 14080
29 141 144 20304 170 86 14620
31 139 142 19738 164 92 15088
33 137 140 19180 158 98 15484
35 135 138 18630 152 104 15808
37 133 136 18088 146 110 16060
39 131 134 17554 140 116 16240
41 129 132 17028 134 122 16348
43 127 130 16510 128 128 16384
45 125 128 16000 166 45 7470
47 123 126 15498 162 47 7614
49 121 124 15004 158 49 7742
51 119 122 14518 154 51 7854
53 117 120 14040 150 53 7950
55 115 118 13570 146 55 8030
57 113 116 13108 142 57 8094
59 111 114 12654 138 59 8142
61 109 112 12208 134 61 8174
a3 107 110 11770 130 63 8190
65 105 108 11340 126 65 8190
a7 103 106 10918 122 67 8174
69 101 104 10504 118 69 8142
71 99 102 10098 114 71 8094
73 o7 100 9700 110 73 8030
75 95 98 9310 106 75 7950
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