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ABSTRACT 
The goal of this paper is to set up a software-calculating helicopter dynamic, which can derive 

the linearized model from any trim point within the global flight envelope, so that we could afford 
nearly complete six degree-of-freedom model of a helicopter plant. We will establish the nonlinear and 
linear mathematical models of helicopter, which are the fundamentals of helicopter simulation and 
control. By using the principle of forces and moments equilibrium, we determine the trim points of 
different helicopter's flight conditions. At each trim point, the linearized model can be derived by 
Taylor’s series expansion. Our contributions will reduce the iteration numbers significantly and 
increase the modeling accuracy by proposed parallel trim procedure.  
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摘要 

    本論文旨在建立直昇機動態的軟體模擬，可導出全空域飛行包絡中任一配平點的線性模

式，以得到直昇機六自由度的完整模式；同時也建立了直昇機非線性及線性的數學模式做為控

制模擬的基礎。利用力與矩的平衡原則，可決定直昇機各種飛行狀況的配平點，並在該配平點

執行泰勒級數展開，以導出線性模式。本論文之貢獻在使用新提出的「平行配平步驟」，可大量

減少迭代的運算時間及增加模式的準確度。 

關鍵詞：直昇機線性模式、非線性動態模擬、配平分析 
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I. INTRODUCTION 
This paper will make an integrated analysis and 

study in the helicopter relevant theories, including 
basic aerodynamics, control and maneuverability, 
etc. The very purpose is to derive a representation 
of a theoretical helicopter model via 
configuration data and aerodynamics, and to 
establish the nonlinear and linear helicopter 
mathematical models served as fundamentals of 
global flight envelope control and simulation 
under any control method. As for helicopter 
simulation, there exist four issues as following: 
A. Modeling 

Modeling issue is to establish the 
representation of forces and moments due to 
helicopter aerodynamics and to express the 
dynamic motion in a mathematical form as:  

( ) ( ) 0, ,t , 0= =x F x u x x&           (1) 

where x  is system states, u  is system control 
inputs, and F is a nonlinear vector function of x 
and u. 
B. Trim analysis 

Finding the position of trim point ex  is to let 
net forces and moments summation be equal to 
zero (including aerodynamic, gravity and inertia 
force) under control eu . The mathematical 
manipulation is to solve ex  and eu  from the 
equation 

e e( , )=0F x u                 (2) 
C. Stability analysis 

Stability analysis is to calculate the 
aerodynamic derivatives at the trim point ex  to 
get the linearized model, including system matrix 
A  and control matrix B , and to check the 
helicopter stability in the neighborhood of trim 
point, i.e. to solve the characteristic equation: 

det - 0
e

∂λ
∂

⎡ ⎤⎛ ⎞ =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦x

FI
x

           (3) 

and verify whether the characteristic values ' sλ  
locate within the left-half s-plane or not. 
D. Response analysis 

Given control command ( )tu , response 
analysis is to find state response ( )tx . Its 
numerical integral solution can be solved as 

following. 
t

0
(t)= (0)+ ( ( ), ( ), )dτ τ τ τ∫x x F x u         (4) 

Section II to V are the theoretical kernels of 
helicopter's 4 issues mentioned above. Section II 
discusses the mathematical establishment of 
nonlinear helicopter model, and section III 
focuses on trim analysis and stability analysis. 
After getting the trim point at each flight 
condition, we derive the helicopter linear model 
just at that trim point. Section IV is concerned 
with the response analysis, and explains how to 
get dynamic responses. Section V contains a real 
example with given Westland Lynx helicopter 
data, and applies the theory mentioned above to 
derive helicopter models over global flight 
envelope.  

II. NONLINEAR HELICOPTER 
MODEL 

By using the theory of dynamics and 
aerodynamics, we will set up the mathematical 
representation of helicopter dynamic model in 
this section. A helicopter can be modeled as the 
combination of five interacting subsystems: 
mainrotor, fuselage, empennage, tailrotor and 
engine, as shown Fig.1. The resulting forces and 
moments of a flying helicopter come from the 
first four subsystems. As for each subsystem, we 
determine its degree of freedom in accordance 
with the simulation level and describe its 
behavior via dynamic equations. By combining 
aerodynamics of each subsystem, we can get the 
integrated helicopter dynamic equations [1,2]. 

 

MainRotor

Fuselage 

Engine TailRotor

Empennage 

 
Fig.1. Five subsystems of helicopter. 
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For each subsystem, there are states to describe 
its behavior (assuming mainrotor and tailrotor all 
with 4 blades) [3]: 

1. Mainrotor： 0 1c 1s, ,β β β  
2. Fuselage ： u , v , w , p , q , r , , ,ψ θ φ  
3. Engine   ： e e, Q , QΩ &  
4. Inflow    ：

T0 0,λ λ  
The six degree-of-freedom rigid body motion 

of helicopter can be described as following [4-7]: 

A. Force equations 
( )m U=m -WQ+VR +F +ds s x x&           (5a) 
( )m V=m -UR+WP +F +ds s y y&           (5b) 

( )m W=m -VP+UQ +F +ds s z z&            (5c) 
B. Moment equation 

( ) ( ) ( ) ( )2 2I P=I R+PQ +I Q-PR -I R -Q + I -I QR+L+dxx xz xy yz yy zz l
&& &

(5d)
( ) ( ) ( ) ( )2 2I Q=I P+QR +I R-PQ -I P -R + I -I PR+M+dyy xy zy xz zz xx m& & &  

    (5e) 
( ) ( ) ( ) ( )2 2I R=I Q+PR +I P-QR -I Q -P + I -I PQ+N+dzz yz xz yx xx yy n&& &  

  (5f) 
C. Attitude equations 

( )p tan qsin r cosφ = + θ φ+ φ&         (5g) 
q cos r sinθ = φ− φ&                 (5h) 
q sin r cos

cos
φ+ φ

ψ =
θ

&                 (5i) 

where U, V, W, and P, Q, R are standard notations 
for linear and angular velocities, respectively, and 
all referred to the fuselage (body-fixed) axes 
system; xxI , xzI ,…, etc, are the moments of inertia 
of the helicopter; sm  is the helicopter's mass. 
Forces (Fx,Fy,Fz) and moments (L,M,N) include 
the effects coming from aerodynamics, gravity, 
and propulsion. They can be described as the sum 
of the contributions from the five subsystems 

x R T F tp fn sF =X +X +X +X +X -m gsinθ           (6a) 

y R T F tp fn sF =Y +Y +Y +Y +Y +m gsin cosθφ      (6b) 

z R T F tp fn sF =Z +Z +Z +Z +Z +m gcos cosθφ       (6c) 

R T F tp fnL=L +L +L +L +L               (6d) 

R T F tp fnM=M +M +M +M +M                (6e) 

R T F tp fnN=N +N +N +N +N                 (6f) 
where the subscripts stand for: rotor (R), tail rotor 
(T), fuselage (F), horizontal tail plane (tp), and 

vertical fin (fn). The orientation of fuselage is 
defined in terms of the Euler angles θ  and φ  
with respect to an earth-fixed axes system. We 
substitute Eqs.(6) into Eqs.(5) and integrate to get 
the helicopter nonlinear dynamics. 

III. LINEAR HELICOPTER 
MODEL 

After constructing the helicopter nonlinear 
model, we recognize that actually the linearized 
model is more often used in designing control 
laws. Therefore how to get the linear model of 
helicopter is the most important work for control 
design. The procedures of linearization must start 
with the exact trim point, otherwise there will 
exist residual forces and moments which make 
the linearization unable to reflect the nonlinear 
character. So a trim condition (flight condition, or 
equilibrium point) must be set before getting the 
linear model, and then we take the Taylor's series 
expansion over this trim point to get the linear 
helicopter model. Linearization contains three 
procedures as following. 

A. Assign flight conditions 
The physical meaning of trim is to find the 

equilibrium point of helicopter motion, i.e. let all 
the derivatives be zero in the body-axis 
coordinate system. Note that the derivatives being 
zero in the body-axis coordinate system doesn't 
mean that the derivatives are zero in the 
inertia-axis coordinate system. Hence, there may 
still exist nonzero acceleration in the inertia-axis 
coordinate system, i.e. helicopter still can have 
the spin mode, as shown in Fig.2. By setting 4 
trim parameters: flight velocity feV , flight path 
angle feγ , turn rate aeΩ = ψ& , and sideslip angle 

eβ , we can assign different flight conditions of 
helicopter. The fuselage velocity and angular 
velocity components at trim condition are 
expressed as  

( )fe e fe feu=V cosχ cosγ cosθ-sinγ sinθ             (7a) 
+= φγχ coscos[sin feefeVv   (7b) 

         )]cossinsincos(cossin θγθγχφ fefee +  
 +−= φγχ sincossin[ feefeVw  (7c) 
         )]cossinsincos(coscos θγθγχφ fefee +  

aep=-Ω sinθ               (7d) 

aeq=Ω sin cosθφ            (7e) 
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aer=Ω cos cosθφ             (7f) 
where eχ  is the artificial track angle which 
relates to the sideslip angle eβ .  

 
Fig.2. Assign flight conditions [4]. 

 
B. Parallel trim condition calculation 

If we want to trim a nonlinear model, the 
derivatives in Eqs.(11) have to be zero. The entire 
trim algorithm can be divided into longitudinal 
trim, lateral/directional trim and main rotor speed 
trim. Before trimming a nonlinear model, we 
have to assign 4 flight condition parameters as 
well as initial guess values to those undetermined 
variables, and iterate those guess values 
repeatedly until the guess values converge to their 
steady-state values. 

These initial-guess values include: 0β , 1cβ , 
1sβ , θ , φ , 0Tθ  and Ω . The entire parallel trim 

processes are inflow iteration, longitudinal/ 
lateral trim and rotor speed trim, as shown in 
Fig.3.  

Iteration method is to guess the initial values 
initialΘ  to calculate a newer newΘ , and then 

compare the difference between them. If the 
difference is too large, then make another guess  

( )Θknew initial new initial

initial new

Θ = Θ + Θ −Θ

Θ = Θ
       (8) 

where Θk  is a damping factor with value 
between 0 and 1, which means the iteration speed. 
The smaller Θk , and the iteration is more stable. 

Θk  is set to 0.5 to iterate till the error is within 
the toleration range.  

new initial newν
Θ

Θ − Θ < Θ          (9) 
where νΘ  is the relative tolerance coefficient. 

The inflow of mainrotor and tailrotor must be 
found in front of the parallel trim. 
1. Iteration of mainrotor inflow 

In high speed flight the rotor interacts with the 
air and induces the so-called inflow iλ . The 
existence of inflow can affect the rotor 
aerodynamics heavily, so that the inflow effect 
must be considered. Normalizing velocities µ , 

zµ  and rotor thrust CT in the usual way gives the 
general expression of rotor inflow iλ  as 

( )
T

i 22
i z

C
λ

2 µ + λ -µ
≡           (10) 

When i 0λ =λ , we call 0λ  is the uniform inflow 
of mainrotor. CT is given as 

 

( )

2
hw

0 1sw

0
T 22 2

z 0
tw

p1 µ µ+ θ + θ +
3 2 2 2sTC =

2ρπR ΩR µ -λ 1+µ+ + θ
2 4

a

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟⎝ ⎠≡ ⎜ ⎟⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (11) 

Since Eq.(5) is an nonlinear equation coupling 
Eq.(6), the iteration to solve inflow velocity is 
necessary. twθ  and a0 denote main rotor blade 
linear twist and lift curve slope. 

The nonlinear equation Eq.(10) is iterated to 
get the inflow 0λ , the zero function is defined as  

T
0 0 1/2

C
g =λ -

2Λ
 ,  ( )22

0 zΛ = µ + λ -µ    (12) 

By means of Newton’s iteration scheme, the 
newer value 0,i+1λ  of mainrotor inflow is as 

( )0,i+1 0i λ0 i 0iλ =λ +k h λ          (13) 
where λ0k  is the damping factor and set to be 
0.5 for a better convergent speed and stability.  

( )
( )

1/2

0i T

i 3/2

0 T z 0i

2λ Λ -C Λ
h =-

2Λ +a sΛ/4-C µ -λ
              (14) 

If the difference between the two inflow values 
is within the relative tolerance after iteration, then 
the mainrotor inflow velocity 0λ  and thruster 
coefficient TC  are found. 

0i 0i-1 0 0iλ -λ <  λ λν       (15) 

where 10

0 10λν
−=  is the relative tolerance 

coefficient. The same procedures are adopted to 
get the tailrotor inflow 0Tλ  
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Ω
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Calculate State Variables
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Main Rotor
Inflow Iteration

00 0 1 0i i iλλ λ ν λ
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 newθ 1c_newβ

N-moment balance L-moment balanceY-force balance

newφ
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T newT T newC θ 1s_newβ
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3

idlee e

idle

Q Q

K

−
Ω = Ω +

Iteration Judge

1i i νΩ−Ω − Ω <

Y
es

Trim Iteration Complete

No

  
Fig.3. Iteration flow chart of parallel-trim analysis. 

 
2. Iteration of parallel trim   

There are enough variables to calculate the 
aerodynamic forces and moments until now, so 
we could start entering the trim iteration, which 
includes longitudinal trim and lateral/directional 
trim, and the absolute tolerance is induced to 

instead of the relative tolerance in [4].  
a. Longitudinal trim to get new TC  and 0β    

Considering the balanced force equation in z 
direction as 
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s

Z
0=qu-pv+ +gcos cos

m
φ θ       (16) 

We find the z-direction acceleration and 
dimensionless acceleration as 

z

s

Z
a =pv-qu-gcos cos

m
φ θ≡ , z

z 2

a
a

Ω R
≡     (17) 

The aerodynamic forces of subsystems in Eq.(6) 
are expressed as following:  

R h s h sZ =X sinγ +Z cosγ         (18) 

h hw w hw w h hw w hw w h hwX =X cosψ -Y sinψ , Y=X sinψ +Y cosψ , Z =Z  (19) 
where 
( )2 2

hw xwX =ρ ΩR πR C , ( )2 2

hw ywY =ρ ΩR πR C , ( )2 2

hw zwZ =ρ ΩR πR C   
(20a) 

1
xw 1cw T 12

C = β C +R , 1
yw 1sw T 22

C = β C +R , zw TC =-C  (20b) 

The residual items iR , i=1,2,3,4,5  are defined 
to get the thruster coefficient TC , and the 

harmonic coefficients (1)

0F , (1)

1sF , (1)

1cF , (1)

2cF , (1)

2cF , 
(2)

1cF , (2)

1cF  refer to [4].  
(1) (1) (1) (2)

0 2c 1c 2s 1s
1 1cw 0 1sw

F F F F
R β β β

2 4 2 4 2

a s
≡ + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

   (21a) 

(1) (1) (1) (2)

0 2c 1s 2s 1c
2 1sw 0 1cw

F F F F
R β β β

2 4 2 4 2

a s
≡ − − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (21b) 

The aerodynamic forces in z direction are 
summed up as 

)cossin( shshfntpFTR ZXZZZZZZ γγ +=++++=  
    

0)
2
1()

2
1()( 22

1 +++−+ ZtptptpZfpfswTT CSVCSVT ρρβ  (22) 

    
Eq.(18)~Eq.(22) are substituted into Eq.(17) to 

find the thruster coefficient as 

( )T 1 z 4 5

3

1
C = µ a -R -R

R
,  s

1 3

m
µ =

ρπR
    (23) 

where 
1 1

3 1cw s w 1sw s w s2 2
R β sinγ cosψ + β sinγ sinψ -cosγ≡  (24a) 

4 1 s w 2 s wR R sinγ cosψ -R sinγ sinψ≡           (24b) 

( )2 21
5 TT T 1swT f p zf tp tp ztp2R -C ν β + µ S C +µ S C≡    (24c) 

4

2 T
T T

R
ν =g

R
⎛ ⎞
⎜ ⎟
⎝ ⎠

, p tp

p tp2 2

S S
S , S

πR πR
≡ ≡    (25) 

The new thruster coefficient induces a new 
collective pitch of mainrotor as  

2

2

hw z 0T
0i 1sw twµ1

03 2

p µ -λ2C1 µ 1+µ
θ = - θ + - - θ

s 2 2 2 4+ a

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

(26) 

, and then a new collective flapping angle is as  

swtwi 1

2
2

020 3
4)

65
1(4)1([

8
µθµθµθ

λ
γβ
β

++++=  

               )](
3
2)(

3
4

10 swhwZ p λµλµ −+−+  (27) 

The new collective flapping angle 0iβ  replaces 
the old one, and continues to the next step 
without iteration. The same procedures are 
adopted in longitudinal trim to get a new 
longitudinal flapping angle 1cβ  and longitudinal 
trim to get a new pitch angle θ . 
b. Lateral/directional trim to get new tailrotor 
thruster coefficient TTC  and collective pitch 0Tθ  

The balanced moment equation is as 
( )xx yy xz0= I -I pq+I qr+N            (28) 

The new tailrotor thruster coefficient is as 

 
( )

18 19 20 21
TT

T cg T

R -R +R +R
C =

l + x ν
           (29) 

where the residual items are 
( ) ( )2 21 1

18 f s f nf cg yf fn fn fn cg yfn2 2
R µ S l C -x C - µ S l +x C≡ (30a) 

( )[ ]19 1 yy xx xzR µ i -i pq+i rq≡                (30b) 

( )1
20 β 1s s s 1c s Q2

R -m β sinγ + cosγ - β sinγ C≡      (30c) 

( )21 xw w yw w cgR - C sinψ +C cosψ x≡            (30d) 
The new tailrotor thruster coefficient induces a 

new effective collective pitch of tailrotor as  

* *zT 0TTT T
0T 1swT23

T 0 T2

µ -λ2C µ3
θ = - - θ

1+ µ s 2 2Ta

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (31) 

, and derive a new collective pitch of 
tailrotor as  

( ) ( )* 2T T
0T,i 0T 3 T 3 zT 0T2 2

βT βT

γ γ 4
θ =θ 1-k 1+µ -k µ -λ

8λ 8λ 3

⎡ ⎛ ⎞ ⎤ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥

⎣ ⎝ ⎠ ⎦ ⎝ ⎠
(32) 

The new tailrotor collective pitch 0T,iθ  
replaces the old one, and continues to the next 
step without iteration. The same procedures are 
adopted in lateral/directional trim to get a new 
latitudinal flapping angle s1β  and lateral/ 
directional trim to get new roll φ . 

3. Mainrotor speed trim to get new rotor speed 
Ω  
By using the droop law of powerplant, we 
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derive the mainrotor speed as  
( )

idleidle e e 3-Ω=Ω Q -Q /K           (33) 

If the difference between the two mainrotor 
speed values is within the absolute tolerance νΩ  
after iteration, then the mainrotor speed iΩ = Ω  
is found, otherwise, repeat the whole trim 
procedure once again. 

i i-1Ω -Ω ν
Ω

<               (34) 

where 410ν −

Ω
=  is the absolute tolerance 

coefficient.  

C. Linearization 
The linearization methodology utilizes Taylor's 

expansion at the trim point by using small 
perturbation theory, and keeping the linear terms 
to get the helicopter linear model [8,9]. A basic 
hypothesis is that the aerodynamic forces and 
moments are analytic functions of states, state 
derivatives and control surface angles. When 
Eqs.(11)~(12) are linearized, helicopter linear 
model cab be derived as 

= +x Ax Bu&               (35) 
[ ] [ ]T T

0 1s 1c 0Tu v w p q r ,≡ φ θ ≡ θ θ θ θx u  
where A is the helicopter system matrix, 
consisting of stability derivatives, which 
represent the characteristic of system. B is the 
control matrix consisting of control derivatives. 
Matrix A and B are shown in Fig.4. 

IV. NONLINEAR SIMULATION 
The nonlinear six degree-of-freedom (DOF6) 

rigid-body equation of motion (EOM) Eqs.(11) 
are used to describe the motion of helicopter. 
Owing to those aerodynamic forces and moments 
being nonlinear functions of states and control 
surface angles, we call the model as 'nonlinear 
model'. We can obtain linear model by means of 
trimming and linearization for the purpose of 
stability analysis and control laws design. The 
linear model only describes the dynamic response 
of helicopter at the neighborhood of trim point; 
therefore it cannot describe the global response. 
Naturally we have to use nonlinear model for the 
sake of simulation fidelity. Although control laws 
are derived from linear mode, they must be put 
into the nonlinear model to verify the feasibility 
of linear control.     

Besides Eqs.(4), the other states used in 
nonlinear simulation include: 

A. Powerplant 
)()[(1

31
31

idleeeeee
ee

e QQQQ −++−= &&& ττ
ττ

 

                 )]( 23 Ω+Ω−Ω+ &
eidleK τ  (36) 

 ( )e R T T RΩ=r+ Q -Q -g Q / I& &                    (37) 
B. Actuator 

00

21

1 2 02

43

3 2 14

3

0.02

19600 196

4900 98 19600

θ 4900

cxx

xx

x x xx

xx

x x xx

x

θ− +

= − − +

− − +

=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

&

&

&

&

&

      (38) 

Control surface movement is governed by 
actuator ability, and we take actuators used in 
UH-60 to be our actuator model. Given the initial 
states and control pitch angles, we can find the 
aerodynamic forces and moments at each 
simulation step. Substituting the forces and 
moments into the rigid-body DOF6 -EOM, we can 
find the present state derivative values, and then 
integrate those to get the state of next time step 
by Runge-Kutta method. The simulation process 
has 4 inputs (flight velocity 

efV , flight path angle 

feγ , turn rate aeΩ = ψ& , sideslip angle eβ ). 
Whenever the 4 flight condition parameters are 
assigned, all the aerodynamic derivatives, system 
matrix A and control matrix B can be found as 
will be shown in the next section.  

V. SIMULATION EXAMPLE  
Referring to the configuration data of Westland 

Lynx helicopter [4] and Jane's powerplant data 
[10], we can construct a helicopter model by 
numerical simulation. Taking level flight as an 
example, we can trim every flight condition to get 
the trim point at different flight velocity feV . 
This paper offers a new parallel-trim method to 
improve the sequential trim method proposed in 
[11], and makes a comparison with each other. 
For the lack of configuration data in [4], we 
estimate some other configuration data [5] to 
continue simulating. 

We use MATLAB program to implement the 
level flight condition from 0m/s to 70m/s and do 
the trim analysis to get the trim point at every 
5m/s intervals. The corresponding A and B 
matrices computed from Fig.4 for each trim point.  
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The state-derivative values should be zero 
theoretically, yet because of the trim algorithm 
convergence error and program round-off error, 
the calculated trim point is a little different from 
the real trim point. We can judge the trim 
effectiveness by the deviation of the 
state-derivative values from zero, and compare 
the simulation results with [11].  

The maximal order of state-derivative values 
are within O(10-5) as shown in Table.1. It's 
obvious that the maximal order of state derivative 
values is much smaller than that in Table.2 [11]. 
Our simulation results reveal that the trim results 
are reasonable and acceptable in linear model 
simulation. The robustness of the feedback 
controller designed later will overcome these 
linear modeling uncertainties. 

When helicopter is in the hovering mode, the 
method proposed in [11] iterates 1359 times 
(runtime=92.49 sec for Pentium III-500Mhz 
CPU), and the maximal order of state derivative 
values is within O(10-2) as shown in Fig.5(a), the 
horizontal axis represents the iteration number, 
and the vertical axis represents the value of the 
variable, but by our parallel-trim method shown 
in Fig.5(b) iterates only 19 times (runtime=2.8 
sec for Pentium III-500Mhz CPU) and the 
maximal accuracy of state-derivative values is 
within O(10-5). The iteration times are reduced 
significantly and the accuracy of state derivative 

values can increase three orders. In hovering 
mode, we find the linearized model whose system 
matrix eigenvalues are 

-10.47, -1.96, -.287, -.261, -.000±.004i,.0543±.41i 

where the real parts of a pair of conjugate 
complex roots are positive. It means that system 
is unstable at this trim point. If the configuration 
data of any kind of helicopter are given, our 
dynamic simulation program will calculate all the 
aerodynamic derivatives for that kind of 
helicopter. So does that of the Lynx helicopter, 
and the results are shown in Fig.6 and Fig.7 
which indicate that the aerodynamic partial 
derivatives are varied with flight velocity feV . 

Figure 8 is the helicopter free response with 
trim point as initial values, and its character of 
instability is predicted by the unstable 
eigenvalues of the linear model. We can design a 
simple state feedback controller for this linear 
model as  

u  =  -Kx + r           (39) 

where r is the reference command. By pole 
placement method, the poles of the close-loop 
system are chosen as 

-10.47  -2.12  -2  -3  -2±2i  -3±3i 

and the feedback gain matrix K is found to be: 
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Fig.4. Matrix A and B of linear helicopter model. 
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(a) serial trim. 
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(b) parallel trim 

Fig.5. Results of trim analysis for iteration    
   variables 0 1c 1s 0 T, , , , ,β β β φ θ θ . 
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Fig.6. Aerodynamic partial derivative-u 
stable partial derivative. 
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Fig.8. Open-loop free response with given initial  

values (Hovering). 
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0.0019 0.0034 -0.0306 0.0029 -0.0005 0.0015 0.0185 0.0030
-0.2847 -0.0509 -0.0181 -0.0400 0.3182 0.0122 -0.2263 1.6203K
0.0388 -0.0185 -0.0006 0.0213 -0.0237 -0.0123 -0.1657 -0.2409
0.0757 0.0965 -0.0287 0.0960 -0.1110 -0.1011 0.

=

5543 -0.4042

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (40) 
Setting the reference command r=0, we obtain 
Fig.9 as the nonlinear response after the 
controller is engaged. It's obvious that the 
designed control law can make system states 
stable in Fig.9, but the system steady-state values 
are a little away from the original trim points and 
reach to a new equilibrium position. This 
phenomenon is owing to numerical errors in trim 
calculation, and there still exist the residual forces 
and moments which are so-called uncertainties.  
 When controller is to be designed, these 
uncertainties must be considered and overcome.  

The controller design is not the key subject 
of this paper, but the establishment of global 
helicopter linear model, as shown in Appendix, is 
very precious and useful for the design of the 
linear control laws, since it's never afforded in the 
domestic or abroad documents. The matrix A and 
B in Appendix can serve as a database for the 
time-varying plant, so the readers can test them in 
any control theory that they are interested in, such 
as robust control, adaptive control, 
gain-scheduling control, etc.  

VI. CONCLUSIONS 
This paper is to establish helicopter linear 

mode for global flight envelope by means of only 
a set of detailed configuration data of helicopter. 
By inputting 4 flight conditions, we can compute 
the states, aerodynamic partial derivatives and  

system characteristic A, B matrices of 
helicopter for any flight condition. When 
compared with [1], our iterative method 
converges more quickly and the state-derivatives 
at trim are more close to 0. The proposed method 
reduces the iteration numbers significantly and 
increases the modeling accuracy by using 
parallel-trim procedures. Finally, we make a 
comparison with the results in [1] to express our 
improvement in trim analysis and give the 
piecewise A and B matrices covering the global 
flight envelope for Lynx helicopter.  
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NOMENCLATURE 
0a   main rotor blade lift curve slope (1/rad) 

Q QTC C,  mainrotor/tailrotor torque coefficient 

T TTC ,C  rotor/tailrotor thrust coefficient 

xC , yC , zC  main rotor x, y, z-axis force coefficients 

0β , 1cβ , 1sβ   blade coning, longitudinal, lateral flapping  
angles 

p,q,r  deviations of roll, pitch, yaw rate  

u,v,w  deviations of forward, sideward, downward  
speed  

eQ  engine torque (N m) 

R TQ ,Q  main and tail rotor torque (N m) 

TR,R  main and tail rotor radius (m) 

Ts, s  rotor/tailrotor solidity  
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sγ
  shaft angle (rad) 

zµ,µ  advance ratio, velocities of the rotor hub  

φ ,θ ,ψ  Euler angles (rad) 

0 0Tθ ,θ  main and tail rotor collective pitch angle 

1s 1cθ ,θ  longitudinal and lateral cyclic pitch  

twθ  main rotor blade linear twist (rad/m) 

TΩ,Ω  main and tail rotor speed (rad/s) 

p s tpS ,S S,  fuselage top-view, side-view, tail plane area (m2) 

Fl  fuselage reference length (m) 

fnl , tpl  distance of fin / tp c.p. of ref.point along  
negative x 

Rh  height of main rotor hub above fuselage  
reference point 

Th  height of tail rotor hub above fuselage reference  
point 

 
Subscript: 
         w, hw  hub/wind-axis coordinate system 
             h  hub coordinate system 
             b  blade coordinate system 
             f  fuselage (body-axis) coordinate system 
   R, T, F, fin, tp  main rotor, tail rotor, fuselage, fin,  

tailplane 
   1c, 1s :sin/cos  function expansion's 1st -order harmonic  

term 
  

 
 

Table.1. The state derivative values of parallel trim    
 results (main rotor speed is fixed), 
Absolute tolerance νΩ

=10-4. 

Flight 
Velocity 
(m/sec) 

u&  v&  w&  p&  q&  r&  

0 -1.1971
e-7 

-2.0574 
e-6 

1.7804 
e-6 

4.6799 
e-7 

-1.7761
e-7 

5.4867
e-6 

5 -1.5892
e-7 

-2.75628 
e-6 

2.1405 
e-6 

6.4135 
e-7 

-1.8156
e-7 

7.38304
e-6 

10 -2.4069
e-7 

-5.2292 
e-6 

2.9797 
e-6 

1.2277 
e-6 

-2.341
e-7 

1.4119
e-5 

20 -8.2166
e-7 

-3.0569 
e-5 

8.7225 
e-6 

7.0990 
e-6 

-5.6071
e-7 

8.3233
e-5 

30 -7.1645
e-7 

-2.5424 
e-5 

6.3915 
e-6 

5.9061 
e-6 

2.5253
e-8 

6.9248
e-5 

40 -1.7212
e-7 

-8.8812 
e-6 

1.1836 
e-6 

1.2391 
e-6 

-5.4261
e-7 

2.4092
e-5 

50 1.3042
e-6 

-1.4085 
e-6 

-1.2225 
e-5 

-1.1632 
e-5 

-1.2344
e-5 

3.0711
e-6 

60 5.7613
e-7 

4.1339 
e-7 

-4.7297 
e-6 

-3.7533 
e-6 

-4.8042
e-6 

-1.173
e-6 

70 -2.4878
e-6 

-2.4589 
e-6 

7.4573 
e-6 

-1.9098 
e-5 

-2.1917
e-5 

9.9821
e-7 

 
 

Table.2. The state derivative values of serial trim  
  results (main rotor speed is fixed),  

Relative tolerance 410ν −
Ω =  

Flight 
Velocity
(m/sec)

u&  v&  w&  p&  q&  r&  

0 -6.6642
e-5 

-8.1344
e-5 

1.1099 
e-3 

-5.6431 
e-2 

1.8357
e-2 

-1.0126
e-2 

10 -9.8527
e-5 

-9.6940
e-5 

1.4857 
e-3 

-3.8298 
e-2 

1.5181
e-2 

-6.8599
e-3 

20 -6.1351
e-5 

-5.2971
e-5 

8.5128 
e-4 

-1.7834 
e-2 

1.1705
e-2 

-3.1786
e-3 

30 -9.9480
e-5 

-5.0397
e-5 

1.3361 
e-3 

-1.0330 
e-2 

1.0922
e-2 

-1.8654
e-3 

40 -1.0552
e-4 

-3.7756
e-5 

1.3915 
e-3 

-8.7373 
e-3 

1.1906
e-2 

-1.6034
e-3 

50 -1.3890
e-4 

-2.9453
e-5 

1.7973 
e-3 

-1.0587 
e-2 

1.3421
e-2 

-1.9924
e-3 

60 -1.1151
e-4 

-2.8591
e-5 

1.3519 
e-3 

-1.6528 
e-2 

1.2179
e-2 

-3.0335
e-3 

70 -2.1174
e-4 

-3.8572
e-5 

2.2861 
e-3 

-2.7950 
e-2 

-1.0467
e-3 

-5.1953
e-3 

 

 

 

 

APPENDIX 
A, B matrices of Lynx helicopter linear model 
1. Flight conditions: fly forward from (hovering) u=0 

m/s to u=70m/s 
2. Every 5m/s interval trim once 
3. A0 means A matrix at flight velocity u=0m/s, A5 

means u=5m/s 
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A0 =                                       B0 = 

-0.0191   -0.0008    0.0172   -0.3371     0.3840            0             0   -9.7920

 0.0010   -0.0349   -0.0015   -0.4032   -0.3381    0.1168    9.7771    0.0328

 0.0141   -0.0015   -0.2994   -0.0256    0.0231   -0.0000    0.5406    0.5930

 0.0130   -0.2290    0.0003  -10.6200   -3.0471  -0.0333             0            0

 0.0405    0.0024   -0.0027    0.5281    -1.8394   -0.0015             0           0

 0.0020    0.0039    0.0061   -1.8554    -0.5412   -0.3487             0     0

          0             0             0    1.0000    -0.0033    0.0606             0            0

          0             0             0             0     0.9985    0.0552              0           0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   5.3046  -10.3467      1.0795              0

  -0.3565    -1.0821   -10.3723     4.7240

-87.0074    -0.7294      0.0755               0

  7.5472  -27.2884  -156.4450    -1.0690

  -1.5292   27.0904      -4.7238    -0.1858

17.7461    -4.8969    -27.9732  -12.9307

            0              0                0               0

            0              0                0               0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

A25=                                       B25 = 
-0.0199    0.0009    0.0309    -0.2566    -0.4320     0.0000             0   -9.8026

 0.0068   -0.0566   -0.0077     0.3749    -0.2551  -24.6561    9.7982    0.0114

-0.0891   -0.0046   -0.6355    -0.2546   25.0298    -0.0001    0.2946   -0.3798

 0.0074   -0.1729    0.0116  -10.6628    -2.6214    -0.0483             0            0

 0.0262    0.0017   -0.0250     0.4728    -2.1380    -0.0004            0             0

-0.0274    0.0840   -0.0225    -1.8156    -0.3324    -0.8800             0            0

          0             0             0      1.0000    -0.0012     0.0387             0            0

          0             0             0               0     0.9995     0.0301             0            0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   2.8486    -9.3393      1.6072     0.0000

  -0.5957    -1.6601   -10.1742     4.5635

-97.2827  -16.7355      0.1124    -0.0000

  8.1125  -29.1930 -155.4786    -1.0327

   5.5983   27.1773     -5.2124    -0.0854

12.1002    -5.9431   -27.3992  -12.4912

            0              0               0              0

            0              0               0              0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

A 50=                                        B50= 
-0.0352    0.0012    0.0329    -0.2390     1.1478      0.0000            0    -9.8092

 0.0047   -0.0817   -0.0174    -1.2294    -0.2224  -49.4853    9.8055   -0.0034

-0.0065   -0.0099   -0.7845    -0.5728   49.8288    -0.0002    0.2692    0.1224

 0.0012   -0.1742    0.0439  -10.4136    -2.4104    -0.0616             0            0

 0.0223    0.0015   -0.0342     0.4799    -2.4287     0.0008             0             0

-0.0199    0.1495   -0.0208    -1.7324    -0.1675    -1.3769             0            0

          0             0             0     1.0000     0.0003     -0.0125             0            0

          0             0             0              0     0.9996      0.0274            0             0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     0.9075    -8.5200      1.5326     0.0000

    -1.5364    -1.8060   -10.1373     6.2898

-121.0934  -38.4155      0.1072     0.0000

  11.9060  -25.6546 -155.2332    -1.4233

   13.7540   28.6606     -5.2603    -0.0574

   11.1396    -6.2134   -26.9902  -17.2165

              0              0               0              0

              0              0               0              0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥

 

A70 =                                         B70 = 
-0.0488     0.0010    0.0546   -0.2673     5.4102     0.0000            0    -9.7841

 0.0067   -0.1014   -0.0237   -5.5533    -0.2358  -69.1944    9.7748   -0.0311

 0.0092   -0.0181   -0.8310   -0.8459   69.5240    -0.0004    0.4279    0.7113

-0.0085   -0.2202    0.1040   -9.9435    -2.4907    -0.0645             0            0

 0.0287    0.0015   -0.0457    0.5308    -2.6444     0.0019              0            0

-0.0295    0.1810    0.0372   -1.6265    -0.2122    -1.6690              0           0

          0             0             0    1.0000      0.0032    -0.0727             0            0

          0             0             0             0      0.9990     0.0437             0            0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     1.2161    -6.7805      0.8654     0.0000

    -1.9976    -1.4391   -10.3493     7.2563

-133.0090  -55.4407      0.0605    -0.0000

  21.1811  -16.3533 -156.0946    -1.6420

   20.2880   30.6086     -4.9193    -0.0698

   18.6063    -2.0112   -27.2949  -19.8620

              0              0               0              0

              0              0               0              0

⎡ ⎤
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥
⎥
⎥

 

 
 


