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Linear Helicopter Model for Global Flight Envelope Control
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ABSTRACT

The goal of this paper is to set up a software-calculating helicopter dynamic, which can derive
the linearized model from any trim point within the global flight envelope, so that we could afford
nearly complete six degree-of-freedom model of a helicopter plant. We will establish the nonlinear and
linear mathematical models of helicopter, which are the fundamentals of helicopter simulation and
control. By using the principle of forces and moments equilibrium, we determine the trim points of
different helicopter's flight conditions. At each trim point, the linearized model can be derived by
Taylor’s series expansion. Our contributions will reduce the iteration numbers significantly and
increase the modeling accuracy by proposed parallel trim procedure.
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I. INTRODUCTION

This paper will make an integrated analysis and
study in the helicopter relevant theories, including
basic aerodynamics, control and maneuverability,
etc. The very purpose is to derive a representation
of a theoretical helicopter model via
configuration data and aerodynamics, and to
establish the nonlinear and linear helicopter
mathematical models served as fundamentals of
global flight envelope control and simulation
under any control method. As for helicopter
simulation, there exist four issues as following:

A. Modeling

Modeling issue is to establish the
representation of forces and moments due to
helicopter aerodynamics and to express the
dynamic motion in a mathematical form as:

x=F(xu.t), x(0)=x, (1)

where X is system states, u is system control
inputs, and F is a nonlinear vector function of X
and u.
B. Trim analysis

Finding the position of trim point X, is to let
net forces and moments summation be equal to
zero (including aerodynamic, gravity and inertia

force) under control u, . The mathematical

manipulation is to solve x, and u, from the

equation

F(Xe’ue):O (2)
C. Stability analysis
Stability —analysis is to calculate the

aerodynamic derivatives at the trim point X, to

get the linearized model, including system matrix
A and control matrix B, and to check the
helicopter stability in the neighborhood of trim
point, i.e. to solve the characteristic equation:

o[(3) -

and verify whether the characteristic values A's
locate within the left-half s-plane or not.

D. Response analysis
Given control command

3)

u(t) ,

analysis is to find state response x(t) .

response
Its
numerical integral solution can be solved as

following.

X(O=x(0)+ [ Fx(2).u(z),7)dz (4)

Section II to V are the theoretical kernels of
helicopter's 4 issues mentioned above. Section II
discusses the mathematical establishment of
nonlinear helicopter model, and section III
focuses on trim analysis and stability analysis.
After getting the trim point at each flight
condition, we derive the helicopter linear model
just at that trim point. Section IV is concerned
with the response analysis, and explains how to
get dynamic responses. Section V contains a real
example with given Westland Lynx helicopter
data, and applies the theory mentioned above to
derive helicopter models over global flight
envelope.

I1. NONLINEAR HELICOPTER
MODEL

By wusing the theory of dynamics and
aerodynamics, we will set up the mathematical
representation of helicopter dynamic model in
this section. A helicopter can be modeled as the
combination of five interacting subsystems:
mainrotor, fuselage, empennage, tailrotor and
engine, as shown Fig.1. The resulting forces and
moments of a flying helicopter come from the
first four subsystems. As for each subsystem, we
determine its degree of freedom in accordance
with the simulation level and describe its
behavior via dynamic equations. By combining
aerodynamics of each subsystem, we can get the
integrated helicopter dynamic equations [1,2].

MainRotor \

Vo
TailRotor " Engine
f\ :
7 . Fuselage
= L-ll____/

(‘;_?\,___ 8 _—
L \ hS T
Empennaé?& \J’(\:’__,,B

Fig.1. Five subsystems of helicopter.



For each subsystem, there are states to describe
its behavior (assuming mainrotor and tailrotor all
with 4 blades) [3]:

1. Mainrotor : B, , B,. » B,

2.Fuselage ‘u,v,w,p,q,1,v,0,0
3.Engine  :Q,Q,, Q.

4. Inflow P hy s Ay

The six degree-of-freedom rigid body motion
of helicopter can be described as following [4-7]:

A. Force equations
mgU=mg (-WQ+VR)+Fy +dy
mg V=my (-UR+WP)+F, +d,

(5a)
(5b)
(5¢)

mgW=myg (-VP+UQ)+F, +d,
B. Moment equation

s Py (R+PQ) 41y (QPR) 1, (R2 Q? ) + (Iyy -IZZ) QRL+,

(5d)
Ly Oly (PHOR) 1 (RPQ) 1, (PZ -RZ) (1 T ) PRt
(5¢)
LRy, (Q+PR) 1, (P-QR) Ty (Q2 _p2) + (Ixx 1y ) PQN,,
(59)
C. Attitude equations
¢=p+tan0(qgsind+rcosq) (5g)
0 =qcosp—rsind (5h)
. :qsin¢+rcos¢ (5i)
cos0

where U, V, W, and P, Q, R are standard notations
for linear and angular velocities, respectively, and
all referred to the fuselage (body-fixed) axes
system; [ , 1 ., etc, are the moments of inertia

of the helicopter; m; is the helicopter's mass.
Forces (Fy,Fy,F,) and moments (L,M,N) include
the effects coming from aerodynamics, gravity,
and propulsion. They can be described as the sum
of the contributions from the five subsystems

F =X X +X; +X,, +X,, -m gsind (6a)
F, =Y, +Y; Y +Y, +Y, +m gsingcosO (6b)
F,=Z, +Z+Z+Z ,+Z, +m gcosgcosd (6¢)
L:LR+LT+LF+L(p+Lfn (6d)
M=M, +M;+M+M +M (6e)
N=N, +N;+N +N_+N (6f)

where the subscripts stand for: rotor (R), tail rotor
(T), fuselage (F), horizontal tail plane (tp), and
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vertical fin (fn). The orientation of fuselage is
defined in terms of the Euler angles 6 and ¢

with respect to an earth-fixed axes system. We
substitute Eqs.(6) into Eqgs.(5) and integrate to get
the helicopter nonlinear dynamics.

1. LINEAR HELICOPTER
MODEL

After constructing the helicopter nonlinear
model, we recognize that actually the linearized
model is more often used in designing control
laws. Therefore how to get the linear model of
helicopter is the most important work for control
design. The procedures of linearization must start
with the exact trim point, otherwise there will
exist residual forces and moments which make
the linearization unable to reflect the nonlinear
character. So a trim condition (flight condition, or
equilibrium point) must be set before getting the
linear model, and then we take the Taylor's series
expansion over this trim point to get the linear
helicopter model. Linearization contains three
procedures as following.

A. Assign flight conditions

The physical meaning of trim is to find the
equilibrium point of helicopter motion, i.e. let all
the derivatives be =zero in the body-axis
coordinate system. Note that the derivatives being
zero in the body-axis coordinate system doesn't
mean that the derivatives are zero in the
inertia-axis coordinate system. Hence, there may
still exist nonzero acceleration in the inertia-axis
coordinate system, i.e. helicopter still can have
the spin mode, as shown in Fig.2. By setting 4
trim parameters: flight velocity V., flight path

fe >
angley,, , turn rate Q_ =\, and sideslip angle
B,, we can assign different flight conditions of

helicopter. The fuselage velocity and angular
velocity components at trim condition are
expressed as

u=Vv, (cosxccosy .C0s0-siny sinG) (7a)

v =V,[sin y, cosy cos¢ + (7b)
sin ¢(cos y, cosy , sinf +siny, cosd)]

W=V [-sin y, cosy sin g+ (7¢)

cos ¢(cos y, cos y, sin @ +sin y, cos 6)]
p=-Q_sin0 (7d)

q=Q _singcos0 (7e)
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where x  is the artificial track angle which

r=Q cos¢gcosd
ae

relates to the sideslip angle B, .

Fig.2. Assign flight conditions [4].

B. Parallel trim condition calculation

If we want to trim a nonlinear model, the
derivatives in Egs.(11) have to be zero. The entire
trim algorithm can be divided into longitudinal
trim, lateral/directional trim and main rotor speed
trim. Before trimming a nonlinear model, we
have to assign 4 flight condition parameters as
well as initial guess values to those undetermined
variables, and iterate those guess values
repeatedly until the guess values converge to their
steady-state values.

These initial-guess values include: B,, B,.,
B., 0, ¢, 6,;, and Q. The entire parallel trim
processes are inflow iteration, longitudinal/
lateral trim and rotor speed trim, as shown in
Fig.3.

Iteration method is to guess the initial values
0, to calculate a newer ©_ , and then
compare the difference between them. If the
difference is too large, then make another guess

0, = ®initial + k(—) (®new - ®initia| )

6. =0

initial

®)

new

where k., 1s a damping factor with value

between 0 and 1, which means the iteration speed.
The smaller k_, and the iteration is more stable.

k. 1is set to 0.5 to iterate till the error is within

®
the toleration range.
|®new - @

<v®|®

€

where v, is the relative tolerance coefficient.

initial new

The inflow of mainrotor and tailrotor must be
found in front of the parallel trim.

1. Iteration of mainrotor inflow
In high speed flight the rotor interacts with the
air and induces the so-called inflow A, . The

existence of inflow can affect the rotor
aerodynamics heavily, so that the inflow effect
must be considered. Normalizing velocities p,

p, and rotor thrust Cr in the usual way gives the
general expression of rotor inflow A, as

A= -

2VH2+()\'1'_”Z)2

When A,=),, wecall %, is the uniform inflow

(10)

of mainrotor. Cr is given as

) _
sy
c, E%=% 2 (11)
prR’ (QR) J{uz-?»oj J{lﬂt ]e
2 4 tw

Since Eq.(5) is an nonlinear equation coupling
Eq.(6), the iteration to solve inflow velocity is
necessary. 6, and 8, denote main rotor blade
linear twist and lift curve slope.

The nonlinear equation Eq.(10) is iterated to

get the inflow A, the zero function is defined as

C :
— , A=pT+ (R, - 12
G W (ree,) (12)

By means of Newton’s iteration scheme, the
of mainrotor inflow is as

g, =)\‘0_

newer value A,

}\'O.Hl:)\‘l)i +k}\0hi (}\'01 ) (13)
where k,, is the damping factor and set to be
0.5 for a better convergent speed and stability.

2,A"-C A
b= 37( - ) (14)
2N +a sA/A-C, (R, A,
If the difference between the two inflow values
is within the relative tolerance after iteration, then
the mainrotor inflow velocity 4, and thruster

coefficient C, are found.

|7\'0i-)\'oi—]| < Vm|)\’0x| (15)

the relative tolerance
coefficient. The same procedures are adopted to

get the tailrotor inflow A

where v, =10" is
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Input Configuration Data Assign Flight Conditions Atmosphere Data
ms’lxx’lyy’EtC ’Yf“’vfu’Qae’Be P

4

Initial Guess
Helicopter Atitude: 0,9
Main Rotor Speed: Q
Main Rotor Flap Angles: By Byes B,
Tail Rotor Pitch Angle: ‘90,

4':‘> Calculate State Variables
u,v,w, p,q,r,0,4,..
| I

Main Rotor
Inflow Iteration

A=Al <v, |4l

Yes

Calculate Aerodynamic Coefficients
c, .C, .C. C, C, C.C,.C,
» fn f Yr f f £ f

Tail Rotor
Inflow Iteration

ﬂtm _/i!mq‘ < V}Vr ﬂh

No

Ye: > > >
v ) \ v v v
N-moment balance X-force balance Z-force balance M-moment balance | | Y-force balance | | L-moment balance
CTT new ? HOTJ"EW HNEW CTchw H B!anw ﬁ Tc_new ¢new B 1s_new
t 3 e 4 i ¥
)
Main Rotor Speed
Q -Q
= idle +
K‘y

Iteration Judge

‘QI 7Q|fl‘ <Vq

‘ Trim Iteration Complete D

Fig.3. Iteration flow chart of parallel-trim analysis.

2. Iteration of parallel trim instead of the relative tolerance in [4].
There are enough variables to calculate the a. Longitudinal trim to getnew C, and B,
aerodynamic forces and moments until now, so Considering the balanced force equation in z

we could start entering the trim iteration, which  direction as
includes longitudinal trim and lateral/directional
trim, and the absolute tolerance is induced to
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SRS et =

(16)

Z
0=qu-pv+—+gcosgcosd
We find the z-direction acceleration and
dimensionless acceleration as
V4 a
a, = —=pv-qu-gcosgcosfd, a = — 17

m Q°R

s

The aerodynamic forces of subsystems in Eq.(6)
are expressed as following:

Z,=X siny +Z cosy, (18)

X=X, 008y, -, Wy, 277, (19)

where

S]rl\vw > "h Xlwsnw

)<hw=p(£_2fl)2 TCRZCXW 4 th=p(S2R)z TERZCyw 4 Z‘M‘ =p( SR)Z TRZCZW
(20a)

C,_=-C, (20b)
The residual items R ,i=1,2,3,4,5 are defined
and the

C.+R,,

Isw — T

=1p_C+R, C, =B

lew T

to get the thruster coefficient C_,
F(l) F(l) F(l)

e ? 2 2 2 2

harmonic coefficients F,”, F.

Is 2

F”, F” refer to [4].

as(E/ L, B E
R1 =" _B]cw + Bo + Blsw T (213)
2\ 4 2 4 2

(1) (1) )
F

as(E"
1{2 EL(LB“W _I_SBO _ 32 BICW + lc j (Zlb)
2 4 2 4 2

The aerodynamic forces in z direction are
summed up as
LZ=Zo+Zi+Zp+Z,+2Zy =(Xysiny,+2Z, cosy,)

1 1
+ Ty Brgr ) + (E prZS pCZf )+ (E pvl:StpCth) +0

Eq.(18)~Eq.(22) are substituted into Eq.(17) to
find the thruster coefficient as

1 _ m
CT:R_(Hlaz_R4_R5)’ lean3

(23)

where
R, =P, sinycosy -+ sinysiny -cosy (24a)

R, =R siny cosy -R siny siny (24b)
RS = -CTTVTBISWT ( Spsz Mtp Stpcztp) (240)
JRY - S S,
vT=gT‘( T) , S =——,8 =—+ (25)
R nR nR

The new thruster coefficient induces a new
collective pitch of mainrotor as

(22)

1 |2C P A 1+
0,-——— —E(eer—)(”—) — lo_ |26)
14i]as 2 2 2 4

, and then a new collective flapping angle is as

1 4 4
; G,(1+ 1) +46,,(=+—) +— ub,
Boi =57 160,(1+u %) (5 6) 3,‘1 Isw

8/12

- ﬂ“lsw)] (27)

replaces

4 2
+§(,uz _/10)+§ﬂ(phw

The new collective flapping angle B

the old one, and continues to the next step
without iteration. The same procedures are
adopted in longitudinal trim to get a new

longitudinal flapping angle B_ and longitudinal
trim to get a new pitch angle 6.

b. Lateral/directional trim to get new tailrotor
thruster coefficient C_  and collective pitch 6,

The balanced moment equation is as
0=(1-1, )pg+l qr+N (28)
The new tailrotor thruster coefficient is as

C = R]8-519+R20+R2] (29)

" ( 1T+YCE)VT

where the residual items are

R, =1u’S (1€, X,C,)-1u,S, (1 +x,)C,, (30a)
R, = [(i,-i,)pa+i,7q] (30b)
R, =-mp}, siny, +(cosy Blcsinys)CQ (30¢)
R, ——(C siny +C_cosy ) (30d)

The new tailrotor thruster coefficient induces a
new effective collective pitch of tailrotor as

BZTI 3 2 [2CTT MZT }\'()T _“_TGLWTJ (31)
I+5p, "\ a,s, 2 2

, and derive a new collective pitch of

tailrotor as

yT 2 ’YT 4
l-l% Q. 5 (1_‘1'[‘1' ) _ks 5 g(}’lzT_)“OT) (32)
BT BT
The new tailrotor collective pitch 6

replaces the old one, and continues to the next
step without iteration. The same procedures are
adopted in lateral/directional trim to get a new
latitudinal ~ flapping angle p_ and lateral/

directional trim to get new roll 4.

3. Mainrotor speed trim to get new rotor speed
Q

By using the droop law of powerplant, we



derive the mainrotor speed as
0=0,,.-(Q.-Q,, )/K, (33)
If the difference between the two mainrotor
speed values is within the absolute tolerance v,
after iteration, then the mainrotor speed Q=0Q

is found, otherwise, repeat the whole trim
procedure once again.

- |<v,
the

(34)

where v, =10" s absolute tolerance

coefficient.

C. Linearization

The linearization methodology utilizes Taylor's
expansion at the trim point by using small
perturbation theory, and keeping the linear terms
to get the helicopter linear model [8,9]. A basic
hypothesis is that the aerodynamic forces and
moments are analytic functions of states, state
derivatives and control surface angles. When
Egs.(11)~(12) are linearized, helicopter linear
model cab be derived as

X =Ax+Bu (35)
x=[uvwpqr¢6],u=[6, 6, 6, 0,]
where A is the helicopter system matrix,

consisting of stability derivatives, which
represent the characteristic of system. B is the
control matrix consisting of control derivatives.
Matrix A and B are shown in Fig.4.

IV. NONLINEAR SIMULATION

The nonlinear six degree-of-freedom (DOF)
rigid-body equation of motion (EOM) Egs.(11)
are used to describe the motion of helicopter.
Owing to those aerodynamic forces and moments
being nonlinear functions of states and control
surface angles, we call the model as 'nonlinear
model'. We can obtain linear model by means of
trimming and linearization for the purpose of
stability analysis and control laws design. The
linear model only describes the dynamic response
of helicopter at the neighborhood of trim point;
therefore it cannot describe the global response.
Naturally we have to use nonlinear model for the
sake of simulation fidelity. Although control laws
are derived from linear mode, they must be put
into the nonlinear model to verify the feasibility
of linear control.

Besides Egs.(4), the other states used in
nonlinear simulation include:
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A. Powerplant
6, =—— [ty +7.)9, +(Q,-Q,_ )

el”e3

+ K3 (Q—-Qyy + z'eZQ)] (36)
Q:H'(Qc 'QR 'gTQT)/IR (37)
B. Actuator
ES -0.02x, +6,
XI X2
X, |=| —19600x —196X, + X,
. (38)
X3 X4
| X, | | —4900x, —98x, +19600x |
0 =4900x,

Control surface movement is governed by
actuator ability, and we take actuators used in
UH-60 to be our actuator model. Given the initial
states and control pitch angles, we can find the
aerodynamic forces and moments at each
simulation step. Substituting the forces and
moments into the rigid-body DOF4-EOM, we can
find the present state derivative values, and then
integrate those to get the state of next time step
by Runge-Kutta method. The simulation process
has 4 inputs (flight velocity v, , flight path angle
v. ,» turn rate Q =y , sideslip angle g, ).
Whenever the 4 flight condition parameters are
assigned, all the aerodynamic derivatives, system

matrix A and control matrix B can be found as
will be shown in the next section.

V. SIMULATION EXAMPLE

Referring to the configuration data of Westland
Lynx helicopter [4] and Jane's powerplant data
[10], we can construct a helicopter model by
numerical simulation. Taking level flight as an
example, we can trim every flight condition to get
the trim point at different flight velocity Vv, .

This paper offers a new parallel-trim method to
improve the sequential trim method proposed in
[11], and makes a comparison with each other.
For the lack of configuration data in [4], we
estimate some other configuration data [5] to
continue simulating.

We use MATLAB program to implement the
level flight condition from Om/s to 70m/s and do
the trim analysis to get the trim point at every
Sm/s intervals. The corresponding A and B
matrices computed from Fig.4 for each trim point.
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The state-derivative values should be zero
theoretically, yet because of the trim algorithm
convergence error and program round-off error,
the calculated trim point is a little different from
the real trim point. We can judge the trim
effectiveness by the deviation of the
state-derivative values from zero, and compare
the simulation results with [11].

The maximal order of state-derivative values
are within O(10°) as shown in Table.l. It's
obvious that the maximal order of state derivative
values is much smaller than that in Table.2 [11].
Our simulation results reveal that the trim results
are reasonable and acceptable in linear model
simulation. The robustness of the feedback
controller designed later will overcome these
linear modeling uncertainties.

When helicopter is in the hovering mode, the
method proposed in [11] iterates 1359 times
(runtime=92.49 sec for Pentium III-500Mhz
CPU), and the maximal order of state derivative
values is within O(10?) as shown in Fig.5(a), the
horizontal axis represents the iteration number,
and the vertical axis represents the value of the
variable, but by our parallel-trim method shown
in Fig.5(b) iterates only 19 times (runtime=2.8
sec for Pentium III-500Mhz CPU) and the
maximal accuracy of state-derivative values is
within O(10°). The iteration times are reduced
significantly and the accuracy of state derivative

X, X +r X, -q X, X -w X +v 0 —gcosf |
Y.-r Y. Y,+p Y, +w Y, Y -u gcosdpcos® —gsindsin®
Zo+q Z,-p Z, Z-v Z,+u z —gsinpcos® —gcosdsinO

L, L, L, L, +kq L, +kp-k,r LI -k,q 0 0

A= M, M/, M, M;—Zp:i—ri([“; L) M, M;+2ri‘i—p7(l""[7[”) 0 0
yy b2l Yy Yy

N, N, N, N;_k3q N;—k,r—kjp N, -kq 0 0

0 0 0 1 sin ¢ tan 6 costan 0 0 Q, secH
| 0 0 0 0 cos ¢ —sin¢ 0 —Q, cos6 |
[ X5, X, X4 Xg,,

Yo,  Yq., Yg.o oo Y,
Zy, Zy, Zy,.  Zy,
B - L§, L. L. L,
Mg My My Mg
N g, N, NG . N,
0 0 0 0
| 0 0 0 (U

values can increase three orders. In hovering
mode, we find the linearized model whose system
matrix eigenvalues are

-10.47, -1.96, -.287, -.261, -.000+.0041,.0543+.411

where the real parts of a pair of conjugate
complex roots are positive. It means that system
is unstable at this trim point. If the configuration
data of any kind of helicopter are given, our
dynamic simulation program will calculate all the
aerodynamic derivatives for that kind of
helicopter. So does that of the Lynx helicopter,
and the results are shown in Fig.6 and Fig.7
which indicate that the aerodynamic partial
derivatives are varied with flight velocity V, .

Figure 8 is the helicopter free response with
trim point as initial values, and its character of
instability is predicted by the unstable
eigenvalues of the linear model. We can design a
simple state feedback controller for this linear
model as

u -Kx + r

(39)

where r is the reference command. By pole
placement method, the poles of the close-loop
system are chosen as

-10.47 -2.12 -2 -3 2421 -3#3i

and the feedback gain matrix K is found to be:

Fig.4. Matrix A and B of linear helicopter model.
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00019 00034 -00306 00029 -0.0005 00015 00185 0.0030
02847 00509 -0.0181 -0.0400 03182 00122 02263 1.6203
00388 -0.0185 -0.0006 0.0213 -0.0237 -0.0123 0.1657 -0.2409
00757 00965 -00287 00960 -0.1110 -0.1011 0.5543 -0.4042
(40)
Setting the reference command r=0, we obtain
Fig.9 asthe nonlinear response after the
controller is engaged. It's obvious that the
designed control law can make system states
stable in Fig.9, but the system steady-state values
are a little away from the original trim points and
reach to a new equilibrium position. This
phenomenon is owing to numerical errors in trim
calculation, and there still exist the residual forces
and moments which are so-called uncertainties.
When controller is to be designed, these
uncertainties must be considered and overcome.

The controller design is not the key subject
of this paper, but the establishment of global
helicopter linear model, as shown in Appendix, is
very precious and useful for the design of the
linear control laws, since it's never afforded in the
domestic or abroad documents. The matrix A and
B in Appendix can serve as a database for the
time-varying plant, so the readers can test them in
any control theory that they are interested in, such
as robust control, adaptive control,
gain-scheduling control, etc.

V1. CONCLUSIONS

This paper is to establish helicopter linear
mode for global flight envelope by means of only
a set of detailed configuration data of helicopter.
By inputting 4 flight conditions, we can compute
the states, aerodynamic partial derivatives and

system characteristic A, B matrices of
helicopter for any flight condition. When
compared with [1], our iterative method
converges more quickly and the state-derivatives
at trim are more close to 0. The proposed method
reduces the iteration numbers significantly and
increases the modeling accuracy by using
parallel-trim procedures. Finally, we make a
comparison with the results in [1] to express our
improvement in trim analysis and give the
piecewise A and B matrices covering the global
flight envelope for Lynx helicopter.
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NOMENCLATURE

a, main rotor blade lift curve slope (1/rad)

0
CosCor
CT’CTT

C..C,.C,

B0’['))1c’Bls

mainrotor/tailrotor torque coefficient
rotor/tailrotor thrust coefficient
main rotor X, y, z-axis force coefficients

blade coning, longitudinal, lateral flapping

angles

XeRS deviations of roll, pitch, yaw rate
b &

u,v,w deviations of forward, sideward, downward

speed

Qc engine torque (N m)

Qy.Q;
RR,

main and tail rotor torque (N m)
main and tail rotor radius (m)

S, S

, S; rotor/tailrotor solidity



shaft angle (rad)

advance ratio, velocities of the rotor hub

THTH
4.0,V
0,.0

020T

0.0

Is2¥lc

Euler angles (rad)

main and tail rotor collective pitch angle
longitudinal and lateral cyclic pitch

0 main rotor blade linear twist (rad/m)

main and tail rotor speed (rad/s)

fuselage top-view, side-view, tail plane area (m?)
1. fuselage reference length (m)

1,1 distance of fin / tp c.p. of ref.point along
negative X
h, height of main rotor hub above fuselage
reference point
h_ height of tail rotor hub above fuselage reference

point

Subscript:
w, hw  hub/wind-axis coordinate system

h hub coordinate system

b blade coordinate system

f fuselage (body-axis) coordinate system

R, T, F, fin, tp main rotor, tail rotor, fuselage, fin,

tailplane
function expansion's 1** -order harmonic
term

1c, 1s :sin/cos

Table.1. The state derivative values of parallel trim
results (main rotor speed is fixed),
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Table.2. The state derivative values of serial trim
results (main rotor speed is fixed),
Relative tolerance v, = 10°*

Absolute tolerance . =10
Q
Flight . .
Velocity| U \% A% p q f
(m/sec)
0 -1.1971| -2.0574 | 1.7804 | 4.6799 | -1.7761 | 5.4867
e-7 e-6 e-6 e-7 e-7 e-6
5 -1.5892| -2.75628 | 2.1405 | 6.4135 | -1.8156 |7.38304
e-7 e-6 e-6 e-7 e-7 e-6
10 -2.4069| -5.2292 | 2.9797 | 1.2277 | -2.341 | 1.4119
e-7 e-6 e-6 e-6 e-7 e-5
20 -8.2166| -3.0569 | 8.7225 | 7.0990 | -5.6071 | 8.3233
e-7 e-5 e-6 e-6 e-7 e-5
30 -7.1645| -2.5424 | 6.3915 | 5.9061 | 2.5253 | 6.9248
e-7 e-5 e-6 e-6 e-8 e-5
40 -1.7212| -8.8812 | 1.1836 | 1.2391 | -5.4261 | 2.4092
e-7 e-6 e-6 e-6 e-7 e-5
50 1.3042 | -1.4085 | -1.2225 | -1.1632 | -1.2344 | 3.0711
e-6 e-6 e-5 e-5 e-5 e-6
60 5.7613 | 4.1339 |-4.7297 | -3.7533 | -4.8042 | -1.173
e-7 e-7 e-6 e-6 e-6 e-6
70 -2.4878| -2.4589 | 7.4573 | -1.9098 | -2.1917 | 9.9821
e-6 e-6 e-6 e-5 e-5 e-7

Flight . .
Velocity| U \ W p q T
(m/sec)

0 -6.6642 | -8.1344 | 1.1099 | -5.6431 | 1.8357 | -1.0126
e-5 e-5 e-3 e-2 e-2 e-2

10 -9.8527 | -9.6940 | 1.4857 | -3.8298 | 1.5181 | -6.8599
e-5 e-5 e-3 e-2 e-2 e-3

20 -6.1351 | -5.2971 | 8.5128 | -1.7834 | 1.1705 | -3.1786
e-5 e-5 e-4 e-2 e-2 e-3

30 -9.9480 | -5.0397 | 1.3361 | -1.0330 | 1.0922 | -1.8654
e-5 e-5 e-3 e-2 e-2 e-3

40 -1.0552 | -3.7756 | 1.3915 | -8.7373 | 1.1906 | -1.6034
e-4 e-5 e-3 e-3 e-2 e-3

50 -1.3890 | -2.9453 | 1.7973 | -1.0587 | 1.3421 | -1.9924
e-4 e-5 e-3 e-2 e-2 e-3

60 -1.1151 | -2.8591 | 1.3519 | -1.6528 | 1.2179 | -3.0335
e-4 e-5 e-3 e-2 e-2 e-3

70 -2.1174 | -3.8572 | 2.2861 | -2.7950 | -1.0467 | -5.1953
e-4 e-5 e-3 e-2 e-3 e-3

APPENDIX

A, B matrices of Lynx helicopter linear model
1. Flight conditions: fly forward from (hovering) u=0
m/s to u=70m/s
2. Every 5m/s interval trim once
3. Ap means A matrix at flight velocity u=0m/s, As
means u=5m/s




e
P F ARG g 2

A= Bo =
[20.0191 -0.0008 0.0172 -0.3371 0.3840 0 0 97920 ][ 5.3046 -10.3467 1.0795 0 |
0.0010 -0.0349 -0.0015 -0.4032 -0.3381 0.1168 9.7771 0.0328 || -0.3565 -1.0821 -10.3723 4.7240

0.0141 -0.0015 -0.2994 -0.0256 0.0231 -0.0000 0.5406 0.5930 || -87.0074 -0.7294 0.0755 0
0.0130 -0.2290 0.0003 -10.6200 -3.0471 -0.0333 0 0 7.5472 -27.2884 -156.4450 -1.0690
0.0405 0.0024 -0.0027 0.5281 -1.8394 -0.0015 0 0 -1.5292 27.0904 -4.7238 -0.1858
0.0020 0.0039 0.0061 -1.8554 -0.5412 -0.3487 0 0 17.7461 -4.8969 -27.9732 -12.9307
0 0 0 1.0000 -0.0033 0.0606 0 0 0 0 0 0

i 0 0 0 0 09985 0.0552 0 0l 0 0 0 0

Azs= Bas=
200199 0.0009 0.0309 -0.2566 -0.4320 0.0000 0 98026 |[ 2.8486 -9.3393 1.6072  0.0000 |

0.0068 -0.0566 -0.0077 03749 -0.2551 -24.6561 9.7982 0.0114 -0.5957 -1.6601 -10.1742 4.5635
-0.0891 -0.0046 -0.6355 -0.2546 25.0298 -0.0001 0.2946 -0.3798 || -97.2827 -16.7355  0.1124 -0.0000
0.0074 -0.1729 0.0116 -10.6628 -2.6214 -0.0483 0 0 8.1125 -29.1930 -155.4786 -1.0327

0.0262 0.0017 -0.0250 0.4728 -2.1380 -0.0004 0 0 5.5983 27.1773 -5.2124 -0.0854
-0.0274 0.0840 -0.0225 -1.8156 -0.3324 -0.8800 0 0 12.1002 -5.9431 -27.3992 -12.4912
0 0 0 1.0000 -0.0012 0.0387 0 0 0 0 0 0
0 0 0 0 0.9995 0.0301 0 01 0 0 0 0 |
A= Bso=
[-0.0352 0.0012 0.0329 -0.2390 1.1478  0.0000 0 -9.8092 ][ 009075 -85200 1.5326 0.0000 |
0.0047 -0.0817 -0.0174 -1.2294 -0.2224 -49.4853 9.8055 -0.0034 -1.5364 -1.8060 -10.1373  6.2898

-0.0065 -0.0099 -0.7845 -0.5728 49.8288 -0.0002 0.2692 0.1224 | | -121.0934 -38.4155 0.1072  0.0000

0.0012 -0.1742 0.0439 -10.4136 -2.4104 -0.0616 0 0 11.9060 -25.6546 -155.2332 -1.4233
0.0223 0.0015 -0.0342 0.4799 -2.4287 0.0008 0 13.7540 28.6606 -5.2603 -0.0574
-0.0199 0.1495 -0.0208 -1.7324 -0.1675 -1.3769 0 0 11.1396 -6.2134 -26.9902 -17.2165
0 0 0 1.0000 0.0003 -0.0125 0 0 0 0 0 0
0 0 0 0 0999 0.0274 0 0]L 0 0 0 0 |
Ayp= Bz =
[-0.0488  0.0010 0.0546 -0.2673 5.4102  0.0000 0 -9.7841][ 12161 -6.7805 0.8654 0.0000 |
0.0067 -0.1014 -0.0237 -5.5533 -0.2358 -69.1944 9.7748 -0.0311 -1.9976 -1.4391 -10.3493 7.2563

0.0092 -0.0181 -0.8310 -0.8459 69.5240 -0.0004 0.4279 0.7113 || -133.0090 -55.4407  0.0605 -0.0000
-0.0085 -0.2202 0.1040 -9.9435 -2.4907 -0.0645 0 0 21.1811 -16.3533 -156.0946 -1.6420

0.0287 0.0015 -0.0457 0.5308 -2.6444 0.0019 0 0 20.2880 30.6086 -4.9193 -0.0698

-0.0295 0.1810 0.0372 -1.6265 -0.2122 -1.6690 0 0 18.6063 -2.0112 -27.2949 -19.8620
0 0 0 1.0000 0.0032 -0.0727 0 0 0 0 0 0
0 0 0 0 09990 0.0437 0 0 0 0 0 0 |



