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                                                                    ABSTRACT 

  
This research proposes a practical method to implement frequency scaling of adaptive analog 

filters. Frequency scaling is currently well known skill to transfer a low-pass prototype filter into 
another low-pass filter with different cut-off frequency. It is a mathematical methodology to have the 
passband change. Here, state feedback approach is used to shift poles of the original low-pass 
prototype filter to the desired poles location so that a new filter that has the desired passband and the 
desired cut-off frequency can be obtained. This approach also makes filters potentially achieve 
adaptive performances. Frequency scaled filters and state feedback controlled filters are also compared 
to show the feasibility of this approach in this paper. 
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利用狀態回授法實踐適應性類比過濾器之頻率比率化調變 

 
           姚凱超 

 
國立彰化師範大學工業教育與技術學系 

 
                      摘       要 

  
 這篇研究提出利用狀態回授法實踐適應性類比過濾器之頻率比率化調變, 頻率比率化調

變是現今皆知之技術用以轉換一個原形之低通濾器成為一個不同截止頻率和不同通帶之低通濾

波器. 此為一數學上改變過濾器通帶之方法. 這文章利用狀態回授法把原形之低通濾器之極點

移到所想要之濾波器極點, 使此原形之低通濾器轉變為不同截止頻率和不同通帶之低通濾波器. 

此法將使濾波器具有適應性之能力.  

 

關鍵字: 頻率比率化, 適應性, 類比, 過濾器, 狀態回授  
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                   I. INTRODUCTION 
 

Frequency scaling is one of the major 
concepts to design low-pass filters. It will affect 
further design on high-pass filters, band-pass 
filters or band-reject filters [1]. This process 
adjusts passband of the prototype low-pass 
filters by changing cut-off frequency. In the 
practical implementation of changing cut-off 
frequency, the filter circuit may require 
switching different values of electronic devices 
[2]. If filter design can make filters have 
different passband without switching any 
electronic devices, this contribution would be 
huge in the filter design field [3,4].  
      If filters can be adjustable due to different 
environments or different desired working 
conditions. It would reduce cost of filters and 
size of products; therefore, to make filters 
adaptive become a major issue to concern with 
the current filter design. For example, in 
communication systems, simplifying the filter 
circuit is very important. Cost and size could 
affect sales. Communication systems are 
expected to experience many different kinds of 
environments and working conditions, such as 
temperature change, shaking environment and 
the desired passband.  These all require 
changing the characteristics of filters. So, 
adaptive control for filters becomes a major 
concept to overcome these problems. State 
feed-back control would be a good method to 
implement this task. 

From the studying of analog filter design, it 
clearly shows that every different kind of filter 
has its own poles [5,6]. The poles are like 
fingerprints to human in filters; therefore, if we 

can appropriately utilize this characteristic, new 
intelligent filters can be designed.  

    State feedback is applied to achieve the 
goal of building such intelligent filters in here 
[6]. State feedback is known to use in close-
loop control in state models [7]. In the other 
words, modern control theory is used to have a 
close-loop control in filters [8]. By this 
approach, characteristics of filters can be 
changed. In state feedback control, it is known 
that if state variables are not available, 
observers are needed. In the practical filter 
design, a passive filter is usually a RLC circuit, 
state variables of filters are easy measured and 
obtained; therefore, consideration of observers 
is unnecessary. 
 
                II. APPROACH 
 

A block diagram shown in Fig. 1 is 
sketched to show the approach of the adaptive 
filter design.  The overall process of design can 
be probably divided into three steps. The first 
step is to find the state model of the original 
low-pass prototype filter, )(SH LPP that 
represents all types of filters such as 
butterworth filters and chebyshev filters . The 
second step is to find the poles of frequency 
transformed state models such as frequency 
scaled filters, band-pass filters and high-pass 
filters. The final step is to use the poles found in 
the second step as desired poles for the state 
model of )(SH LPP ; therefore, state feedback 
gains used to transfer a low-pass prototype filter 
to another type of filter can be found.  

 
 
 
 
 
 

 
                                                                                                            Desired poles 
 
                                                    
                                                   2nd canonical 
                                                       form 

 
 
Fig. 1. The design flow of adaptive filters design.
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transfer function and can be presented by a 
polynomial in S  over a polynomial in S      
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where NM = =  the highest order of numerator  
or denominator. ka  and kb  are constant 
parameters of denominator and numerator 
respectively. 
       The reason why NM =  is defined, because 
it helps to simplify sketching the block diagram 
of filters by second canonical form in the 
further step. A frequency scaled filter transfer 
function )(SH fs  can be obtained by frequency 
transformation with a scaling factor fk  that is 
real and positive [9]. 

    

∑

∑

=

=
→

== N

k

k

f
k

M

k

k

f
k

k
SSLPP

fs

k
Sa

k
Sb

SHSH
f

0

0

)(

)(
|)()(

          
)2(

 

       Let 
k

f

kfs
k k

bb )(=  and 
k

f

kfs
k k

aa )(= . So,     

 

∑

∑

=

== N

k

kfs
k

M

k

kfs
k

fs

Sa

Sb
SH

0

0)(
                                     

)3(
  

     
Now, Apply second canonical form and 

define a variable w . Eq.(1) can be presented as  
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where the superscript   )(M    and  )( N   denote  
derivative order of w  

Eq.(6) can be revised as 
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Based on Eq.(5) and Eq.(7), a block 

diagram of the low-pass prototype filter, 
)(SH LPP , can be sketched as Fig. 2. 

 
 
 
 
 
 
 
 
                                                                                                                                                      
 
 
 
 
 
 
 
 
 

Fig. 2. The block diagram of  )(SH LPP . 
A state model obtained from Fig. 2 is 

shown as 
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)()(........ 12110 MMMM xbxbxbxby &++++= −
         (8b) 

 
Because of  NM = ,  

NM xx = .     For 
simplification,  define another state variable 

px   
to represent NM xx ,  at the same time with 

Np ~1= , Mp ~1=  and PNM == . Therefore, 
)()(........ 12110 pppp xbxbxbxby &++++= −
      (9) 

 
where 

p
p

p

P

pp
p a

uxa
axa

axa
ax +−−−−= − )(.......)()()( 1

2
1

1
0&    

then,  
 

++++= − )(........ 12110 pp xbxbxby    

])(.......)()([ 1
2

1
1

0

p
p

p

p

pp
p a

uxa
axa

axa
ab +−−−− −  

.......)()( 2
1

11
0

0 +−+−= x
a

ab
bx

a
ab

b
p

p

p

p   

u
a
b

x
a
ab

b
p

p
p

p

pp
p +−+ −
− )( 1

1
                              

)10(
 

     
Now, use a standard state model to 

represent the state  equation and the output 
equation derived from Fig. 2. 
 

        BuAxx +=&                             (11a) 
               DuCxy +=                            (11b) 
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       Next, for the state model of frequency 
scaled filters )(SH fs . The same process finding 
state model of )(SH LPP  by second canonical 
form can be applied too. So, in time-domain, 
Eq.(3) can be also shown as Eq.(12) and Eq.(13) 
and a block diagram can be sketched as Fig. 3. 
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where the superscript )(M  and )(N  denote  
derivative order of w . 

 
 
 
 
 
                                                                                                                                                              
 
 
 
 
 
 
 
 
 

Fig. 3. The block diagram of )(SH fs
.

A state model obtained from Fig. 3 is 
shown as 
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Same here, define another state variable 
px  to represent NM xx ,  at the same time with 

Np ~1= , Mp ~1=  and PNM ==  for 
simplification. Therefore, 
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Now, use a standard state model to 

represent the state equation and the output 
equation derived from Fig. 3. 

 
                  uBxAx fsfs +=&                       (19a) 

                         uDxCy fsfs +=                       (19b) 
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      Now, in order to frequency scale the low-
pass prototype filter, the desired poles of 

)(SH LPP
state model that are the eigenvalues of 

the matrix fsA  need to be found first [9]. 
Therefore,                                        
 

)( fs
d AeigP =                       (20) 

 

      Define a state feedback gain G−  for Eq.(11), 
)(SH LPP  state model. Then, the state feedback 

can be wrote as 
 
                              Gxu −=                               (21) 
 

Next, Eq.(11a) can be revised as 
 
                       BGxAxx −=&                           (22) 

xBGA )( −=                          (23) 
Let          )()( fsAeigBGAeig =−                    (24) 

     
The state feedback gain G−  can be obtained 

by comparing the characteristic polynomials of 
matrix )( BGA −  and )( fsA . 

 
   )det())(det( fsASIBGASI −=−−              (25) 

     
where I  is an identity matrix. 

G−  will be the gain that transfer the low-
pass prototype filter into the frequency scaled 
new filter by state feedback approach. State-
feedback only changes the pole of the system. 
In the other words, feedback gains only affect 
the state equation of the system. The output 
equation of the close-loop controlled system 
should use the output equation of the frequency 
transformed state model, because the block 
diagram of close-loop controlled filter block 
diagram should has same structure as the block 
diagram of frequency transformed state model.  

Such a low-pass to low-pass 
transformation by state feedback control, the 
features of filters can be summarized as: 

 
A. Poles and Zeros 
 
        Since   fk     is    real   and    positive,   the  
magnitude of the poles and zeros are scaled but 
not the phase angles. A pole/zero plot of 

)(SH fs  will be identical to that of )(SH LPP  
except that the axes will be scaled by fk . 
 
B. Magnitude Frequency Response and 

Phase Response 
 

The magnitude frequency response and 
phase response maybe summarized as follows: 

 
)/()( fLPP
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and, )/()( fLPP
fs kjwHjwH ∠=∠                   (27) 

 
      Therefore, plots of the transformed 
(frequency-scaled) magnitude frequency 
response, (26), and the phase response, (27), are 
identical to those obtained from the low-pass 
prototype except for the frequency axes by fk . 
 
C. Phase Delay and Group Delay 
 

Phase delay and group delay may be 
summarized as follows: 
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and, 
        ff

LPP
gd

fs
pd kkwtwt /)/()( =                       (29) 

 
Therefore, plots of the transformed 

(frequency-scaled) phase delay (28), and group 
delay (29), not only have the frequency axes 
scaled by ,fk  but the amplitude axes and 

scaled by 
fk

1 . 

 
D. Time-Domain Response 
 
       The unite impulse response may be 
summarized as follow: 
 
                 )()( tkhkth fLPPf

fs =                  (30) 
 
       Note that the transformed (frequency-
scaled) unit impulse response, as shown in (30), 
is a time—scaled version of the prototype unit 
impulse response and is also amplitude scaled 
by fk . If 1>fk , then )(th fs  will be greater 
in amplitude and time-compressed, compared to 

)(thLPP . 
The unit step response may be summarized 

as follow: 
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u
fs
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        Note that the transformed unit step 
response, as shown in Eq.(31), is a time scaled 
version of the prototype unit step response with 
no corresponding amplitude. 
    
             IV. ILLUSTRATIONS 
 
        A 3th order Butterwoth low-pass prototype 
transfer function        
                 

122
1)( 23 +++

=
SSS
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The  frequency  response and the pole-zero 

plot are shown in Fig. 4. 
 

 
 
Fig. 4 The frequency response and the pole-zero plot. 
 
       If it is desired that the cut-off frequency, 

100=Wc . First of all, in order to find the state 
model of )(SH LLP . The block diagram of the 
filter needs to be drawn by the 2nd canonical 
from as Fig. 5. 
      Therefore, the state model is shown as 
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Fig. 5. The block diagram of )(SH LPP . 
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Fig 6. The frequency response and the pole-zero  
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Fig. 8. The block diagram of the close-loop controlled filter with preliminary   
           feedback vGxu +−= .  
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This output equation uses the same 

numerator polynomial as Eq.(34). In the other 
words, the block diagram drawn by the second 
canonical form of this close-loop controlled filter 
shown in Fig. 8 will have same structure as Fig. 
7. 
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      The  frequency response and the pole-zero 

plot of this close-loop controlled filter are show 
as below. 
 

  
 
Fig. 9. The frequency response and the pole-zero     

plot of this close-loop controlled filter. 
  

  Now, we can compare the theoretical 
frequency scaled filter in Fig. 6 and practically 
implementing state feedback control in Fig. 9. 
These two low-pass filters having  Wc = 100 
are almost identical. This shows the feasibility 
of achieving adaptive filters by state feedback 
approach. 
         
               VII. CONCLUSIONS 

This paper is primary research of 
implementing adaptive analog filter design by 
state feedback approach. It provides a new 
concept to implement frequency scaling of filter 
design. This technique is used in not only low-
pass to low-pass transformation but also low-
pass to high pass transformation, low-pass to 
band-pass transformation, and low-pass to 
band-reject transformation. This method does 
not restrict using in any type of filters. This 
research opens a new door for adaptive filter 
design field. Based on one filter circuit, low-
pass filters, high pass filters, and band-pass 
filters will all be achieved without changing 
circuit design or switching any electronic 
devices. 
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